61 research outputs found

    NPS: A Framework for Accurate Program Sampling Using Graph Neural Network

    Full text link
    With the end of Moore's Law, there is a growing demand for rapid architectural innovations in modern processors, such as RISC-V custom extensions, to continue performance scaling. Program sampling is a crucial step in microprocessor design, as it selects representative simulation points for workload simulation. While SimPoint has been the de-facto approach for decades, its limited expressiveness with Basic Block Vector (BBV) requires time-consuming human tuning, often taking months, which impedes fast innovation and agile hardware development. This paper introduces Neural Program Sampling (NPS), a novel framework that learns execution embeddings using dynamic snapshots of a Graph Neural Network. NPS deploys AssemblyNet for embedding generation, leveraging an application's code structures and runtime states. AssemblyNet serves as NPS's graph model and neural architecture, capturing a program's behavior in aspects such as data computation, code path, and data flow. AssemblyNet is trained with a data prefetch task that predicts consecutive memory addresses. In the experiments, NPS outperforms SimPoint by up to 63%, reducing the average error by 38%. Additionally, NPS demonstrates strong robustness with increased accuracy, reducing the expensive accuracy tuning overhead. Furthermore, NPS shows higher accuracy and generality than the state-of-the-art GNN approach in code behavior learning, enabling the generation of high-quality execution embeddings

    Near-infrared photoactivatable control of Ca signaling and optogenetic immunomodulation

    Get PDF
    The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed Opto-CRAC ) that selectively and remotely controls Ca2+ oscillations and Ca2+-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca2+-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded photoactivatable adjuvant to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote control of Ca2+-modulated activities with tailored function

    Near-infrared photoactivatable control of Ca2+ signaling and optogenetic immunomodulation

    Get PDF
    The application of current channelrhodopsin-based optogenetic tools is limited by the lack of strict ion selectivity and the inability to extend the spectra sensitivity into the near-infrared (NIR) tissue transmissible range. Here we present an NIR-stimulable optogenetic platform (termed 'Opto-CRAC') that selectively and remotely controls Ca(2+) oscillations and Ca(2+)-responsive gene expression to regulate the function of non-excitable cells, including T lymphocytes, macrophages and dendritic cells. When coupled to upconversion nanoparticles, the optogenetic operation window is shifted from the visible range to NIR wavelengths to enable wireless photoactivation of Ca(2+)-dependent signaling and optogenetic modulation of immunoinflammatory responses. In a mouse model of melanoma by using ovalbumin as surrogate tumor antigen, Opto-CRAC has been shown to act as a genetically-encoded 'photoactivatable adjuvant' to improve antigen-specific immune responses to specifically destruct tumor cells. Our study represents a solid step forward towards the goal of achieving remote and wireless control of Ca(2+)-modulated activities with tailored function. DOI: http://dx.doi.org/10.7554/eLife.10024.00

    Natural and semi-natural land dynamics under water resource change from 1990 to 2015 in the Tarim Basin, China

    No full text
    The Tarim Basin is a typical arid area and has the world’s most severe desertification of natural and semi-natural land due to limited water resources. However, knowledge about the impacts of changes in water resources on the spatio-temporal dynamics of natural and semi-natural land is still limited. We analyzed the spatio-temporal changes in natural and semi-natural land and the associations with desertification in the Tarim Basin during the period 1990–2015. We then investigated the changes in water resources and the consequent impacts on the spatio-temporal changes of natural and semi-natural land by integrating Gravity Recovery and Climate Experiment territorial water storage data and field observations. The results showed that a total area of 10.32 × 10 ^3 km ^2 of natural and semi-natural land was converted to desert during the period 1990–2015. Desert vegetation type and saline type were the natural and semi-natural land types most sensitive to conversion to desert. The area of natural and semi-natural land decreased by 0.83% every year, and the proportion of desertified land was 34.79% on average during the period 2000–2010; this is less than for the period 1990–2000 (1.14% yr ^−1 and 52.01%) due to increased availability of water resources from the water conveyance program. However, the rate of decrease of natural and semi-natural land area (0.93% yr ^−1 ) and the proportion of desertified land (58.88%) rose again during the period 2010–2015 due to the rapid decrease in water resources. During the period 2000–2015, the rate of loss of natural and semi-natural land area (7.89%) in the region with decreased water resources was about twice that in the region with increased water resources (3.88%), highlighting the critical role of water resources in maintaining natural and semi-natural land and slowing desertification

    Tracking the spatio-temporal change of cropping intensity in China during 2000–2015

    No full text
    Improvement in the efficiency of farmland utilization and multiple cropping systems are of prime importance for achieving food security in China. Therefore, spatially-explicit analysis detecting trends of cropping intensity are important preconditions for sustainable agricultural development. However, knowledge about the spatiotemporal dynamics of cropping intensity in China remains limited. In this study, we generated annual cropping intensity maps in China during 2000–2015 using a rule-based algorithm and MOD09A1 time series imagery. We then analyzed the spatio-temporal changes of cropping intensity. The results showed single-cropping and double-cropping areas were about 1.28 ± 0.027 × 10 ^6 km ^2 and 0.52 ± 0.027 × 10 ^6 km ^2 in China in 2015 and their areas were relatively stable from 2000–2015. However, cropping intensity had substantial spatial changes during 2000–2015. About 0.164 ± 0.026 × 10 ^6 km ^2 of single-cropping area was converted to double-cropping area, which mainly occurred in the Huang-Huai-Hai Region. About 0.193 ± 0.028 × 10 ^6 km ^2 of double-cropping area was converted to single-cropping area, which mainly occurred in the southern part of China. About 85% of croplands with decreases in cropping intensity were located in the southern part of China, and about 80% of croplands with increases in cropping intensity was distributed in the Huang-Huai-Hai Region and the northern part of the Middle and Lower Reaches of the Yangtze River region ( p  < 0.05). The landscapes of different cropping systems tended to be homogenized in major agricultural production regions
    • …
    corecore