5 research outputs found

    Dynamic Behaviour Analysis of Turbocharger Rotor-Shaft System in Thermal Environment Based on Finite Element Method

    No full text
    The stable operation of a high-speed rotating rotor-bearing system is dependent on the internal damping of its materials. In this study, the dynamic behaviours of a rotor-shaft system with internal damping composite materials under the action of a temperature field are analysed. The temperature field will increase the tangential force generated by the internal damping of the composite material. The tangential force will also increase with the rotor speed, which can destabilise the rotor-shaft system. To better understand the dynamic behaviours of the system, we introduced a finite element calculation model of a rotor-shaft system based on a 3D high-order element (Solid186) to study the turbocharger rotor-bearing system in a temperature field. The analysis was done according to the modal damping coefficient, stability limit speed, and unbalance response. The results show that accurate prediction of internal damping energy dissipation in a temperature field is crucial for accurate prediction of rotor dynamic performance. This is an important step to understand dynamic rotor stress and rotor dynamic design

    AIE-Active Fluorene Derivatives for Solution-Processable Nondoped Blue Organic Light-Emitting Devices (OLEDs)

    No full text
    A series of fluorene derivatives end-capped with diphenylamino and oxadiazolyl were synthesized, and their photophysical and electrochemical properties are reported. Aggregation-induced emission (AIE) effects were observed for the materials, and bipolar characteristics of the molecules are favored with measurement of carrier mobility and calculation of molecular orbitals using density functional theory (DFT). Using the fluorene derivatives as emitting-layer, nondoped organic light-emitting devices (OLEDs) have been fabricated by spin-coating in the configuration ITO/PEDOT:PSS­(35 nm)/PVK­(15 nm)/<b>PhN-OF­(</b><i><b>n</b></i><b>)-Oxa</b>(80 nm)/SPPO13­(30 nm)/Ca­(8 nm)/Al­(100 nm) (<i>n</i> = 2–4). The best device with <b>PhN-OF­(</b><b>2</b><b>)-Oxa</b> exhibits a maximum luminance of 14 747 cd/m<sup>2</sup>, a maximum current efficiency of 4.61 cd/A, and an external quantum efficiency (EQE) of 3.09% in the blue region. Investigation of the correlation between structures and properties indicates that there is no intramolecular charge transfer (ICT) increase in these molecules with the increase of conjugation length. The device using material of the shortest conjugation length as emitting-layer gives the best electroluminescent (EL) performances in this series of oligofluorenes
    corecore