18,723 research outputs found
Hamiltonian lattice quantum chromodynamics at finite density with Wilson fermions
Quantum chromodynamics (QCD) at sufficiently high density is expected to
undergo a chiral phase transition. Understanding such a transition is of
particular importance for neutron star or quark star physics. In Lagrangian
SU(3) lattice gauge theory, the standard approach breaks down at large chemical
potential , due to the complex action problem. The Hamiltonian formulation
of lattice QCD doesn't encounter such a problem. In a previous work, we
developed a Hamiltonian approach at finite chemical potential and
obtained reasonable results in the strong coupling regime. In this paper, we
extend the previous work to Wilson fermions. We study the chiral behavior and
calculate the vacuum energy, chiral condensate and quark number density, as
well as the masses of light hadrons. There is a first order chiral phase
transition at zero temperature.Comment: 23 pages. Version accepted for publication in Physical Review
- …