20 research outputs found

    Integrated electro-optically tunable narrow-linewidth III-V laser

    Full text link
    We demonstrate an integrated electro-optically tunable narrow-linewidth III-V laser with an output power of 738.8 {\mu}W and an intrinsic linewidth of 45.55 kHz at the C band. The laser cavity is constructed using a fiber Bragg grating (FBG) and a tunable Sagnac loop reflector (TSLR) fabricated on thin film lithium niobate (TFLN). The combination of the FBG and the electro-optically tunable TSLR offers the advantages of single spatial mode, single-frequency, narrow-linewidth, and wide wavelength tunability for the electrically pumped hybrid integrated laser, which features a frequency tuning range of 20 GHz and a tuning efficiency of 0.8 GHz/V

    Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China

    No full text
    Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China, was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for the period 1993–2020. First, sea surface temperature (SST) data for waters off NPPs were retrieved from Landsat imagery using a radiative transfer equation in conjunction with a split-window algorithm. Then, retrieved SST data were used to analyze seasonal and interannual changes in areas affected by NPP thermal discharge, as well as the effects of NPP installed capacity, tides, and wind field on the diffusion of thermal discharge. Analysis of interannual changes revealed an increase in SST with an increase in NPP installed capacity, with the area affected by increased drainage outlet temperature increasing to different degrees. Sea surface temperature and NPP installed capacity were significantly linearly related. Both flood tides (peak spring and neap) and ebb tides (peak spring and neap) affected areas of warming zones, with ebb tides having greater effects. The total area of all warming zones in summer was approximately twice that in spring, regardless of whether winds were favorable (i.e., westerly) or adverse (i.e., easterly). The effects of tides on areas of warming zones exceeded those of winds

    Long-Term Changes and Factors That Influence Changes in Thermal Discharge from Nuclear Power Plants in Daya Bay, China

    No full text
    Thermal discharge (i.e., warm water) from nuclear power plants (NPPs) in Daya Bay, China, was analyzed in this study. To determine temporal and spatial patterns as well as factors affecting thermal discharge, data were acquired by the Landsat series of remote-sensing satellites for the period 1993–2020. First, sea surface temperature (SST) data for waters off NPPs were retrieved from Landsat imagery using a radiative transfer equation in conjunction with a split-window algorithm. Then, retrieved SST data were used to analyze seasonal and interannual changes in areas affected by NPP thermal discharge, as well as the effects of NPP installed capacity, tides, and wind field on the diffusion of thermal discharge. Analysis of interannual changes revealed an increase in SST with an increase in NPP installed capacity, with the area affected by increased drainage outlet temperature increasing to different degrees. Sea surface temperature and NPP installed capacity were significantly linearly related. Both flood tides (peak spring and neap) and ebb tides (peak spring and neap) affected areas of warming zones, with ebb tides having greater effects. The total area of all warming zones in summer was approximately twice that in spring, regardless of whether winds were favorable (i.e., westerly) or adverse (i.e., easterly). The effects of tides on areas of warming zones exceeded those of winds

    >

    No full text

    Satellite-Derived Bottom Depth for Optically Shallow Waters Based on Hydrolight Simulations

    No full text
    The bottom depth of coastal benthic habitats plays a vital role in the coastal ecological environment and navigation. In optically shallow waters (OSWs), seafloor reflectance has an impact on the remotely sensed data, and thus, water depth can be retrieved from the remote sensing reflectance (Rrsλ) values provided by satellite imagery. Empirical methods for depth estimation are mainly limited by field measurements coverage. In addition, owing to the diverse range of water bio-optical properties in coastal regions, the high-precision models that could be applied to all OSWs are insufficient. In this study, we developed a novel bottom-depth retrieval method based on Hydrolight simulated datasets, in which Rrsλ were generated from radiative transfer theory instead of actual satellite data. Additionally, this method takes into consideration the variable conditions of water depth, chlorophyll concentrations, and bottom reflectance. The bottom depth can be derived from Rrsλ using a data-driven machine learning method based on the random forest (RF) model. The determination coefficient (R2) was greater than 0.98, and the root mean squared error (RMSE) was less than 0.4 m for the training and validation datasets. This model shows promise for use in different coastal regions while also broadening the applications that utilize satellite data. Specifically, we derived the bottom depth in three areas in the South China Sea, i.e., the coastal regions of Wenchang city, Xincun Bay, and Huaguang Reef, based on Sentinel-2 imagery. The derived depths were validated by the bathymetric data acquired by spaceborne photon-counting lidar ICESat-2, which was able to penetrate clean shallow waters for sufficient bottom detection. The predicted bottom depth showed good agreement with the true depth, and large-scale mapping compensated for the limitations resulting from along-track ICESat-2 data. Under a variety of circumstances, this general-purpose depth retrieval model can be effectively applied to high spatial resolution imagery (such as that from Sentinel-2) for bottom depth mapping in optically shallow waters

    Evaluating Atmospheric Correction Methods for Sentinel−2 in Low−to−High−Turbidity Chinese Coastal Waters

    No full text
    Inaccuracies in the atmospheric correction (AC) of data on coastal waters significantly limit the ability to quantify the parameters of water quality. Many studies have compared the effects of the atmospheric correction of data provided by the Sentinel−2 satellites, but few have investigated this issue for coastal waters in China owing to a limited amount of in situ spectral data. The authors of this study compared four processors for the atmospheric correction of data provided by Sentinel−2—the Atmospheric Correction for OLI ‘lite’(ACOLITE), Sea-viewing Wide Field-of-view Sensor (SeaWiFS) Data Analysis System (SeaDAS), Polynomial-based algorithm applied to MERIS (POLYMER), and Case 2 Regional Coast Colour (C2RCC)—to identify the most suitable one for water bodies with different turbidities along the coast of China. We tested the algorithms used in these processors for turbid waters and compared the resulting inversion of the remote sensing reflectance (Rrs) using in situ reflectance data from three stations with varying levels of coastal turbidity (HTYZ, DONG’OU, and MUPING). All processors significantly underestimated the results on data from the HTYZ station, which is located along waters with high turbidity, with the SeaDAS delivering the best performance, with an average band RMSE of 0.0146 and an average MAPE of 29.80%. It was followed by ACOLITE, with an average band RMSE of 0.0213 and an average MAPE of 43.43%. The performance of two AC algorithms used in ACOLITE, dark spectrum fitting (DSF) and exponential extrapolation (EXP), was also evaluated by comparing their results with in situ measurements at the HTYZ site. The ACOLITE-EXP algorithm delivered a slight improvement in results for the blue band compared with the DSF algorithm in highly turbid water, but led to no significant improvement in the green and red bands. C2RCC delivered the best performance on data from the DONG’OU station, which is located along water with medium turbidity, and from the MUPING station (water with low turbidity), with values of the MAPE of 18.58% and 28.41%, respectively

    The Inversion of HY-1C-COCTS Ocean Color Remote Sensing Products from High-Latitude Seas

    No full text
    China’s first operational ocean color satellite sensor, named the Chinese Ocean Color and Temperature Scanner (HY-1C-COCTS), was launched in September 2018 and began to provide operational data in June 2019. However, as a polar orbiting ocean color satellite sensor, HY-1C-COCTS would inevitably encounter regions impacted by large solar zenith angles when observing the high-latitude seas, especially during the winter. The current atmospheric correction algorithm used by ocean color satellite data processing software cannot effectively process observation data with solar zenith angles greater than 70°. This results in a serious lack of effective ocean color product data from high-latitude seas in winter. To solve this problem, this study developed an atmospheric correction algorithm based on a neural network model for use with HY-1C-COCTS data. The new algorithm used HY-1C-COCTS satellite data collected from latitudes greater than 50°N and between April 2020 and April 2021 to establish a direct relationship between the total radiance received by the satellite and the remote sensing reflectance products. The evaluation using the test dataset shows that the inversion accuracy of the new algorithm is relatively high under different solar zenith angles and different HY-1C-COCTS bands (the relative deviation is 3.37%, 7.05%, 5.10%, 5.29%, and 10.06% at 412 nm, 443 nm, 490 nm, 520 nm, and 565 nm, respectively; the relative deviation is 1.07% when the solar zenith angle is large (70~90°)). Cross comparison with MODIS Aqua satellite products shows that the inversion results are consistent. After verifying the accuracy and stability of the algorithm, we reconstructed the remote sensing reflectance dataset from the Arctic Ocean and surrounding high-latitude seas (latitude greater than 50°N) and successfully retrieved chlorophyll-a data and information on other marine ecological parameters
    corecore