7,087 research outputs found
Isospin dependence of projectile-like fragment production at intermediate energies
The cross sections of fragments produced in 140 MeV Ca + Be
and Ni + Be reactions are calculated by the statistical
abration-ablation(SAA) model and compared to the experimental results measured
at the National Superconducting Cyclotron Laboratory (NSCL) at Michigan State
University. The fragment isotopic and isotonic cross section distributions of
Ca and Ca, Ni and Ni, Ca and Ni, and
Ca and Ni are compared and the isospin dependence of the
projectile fragmentation is studied. It is found that the isospin dependence
decreases and disappears in the central collisions. The shapes of the fragment
isotopic and isotonic cross section distributions are found to be very similar
for symmetric projectile nuclei. The shapes of the fragment isotopic and
isotonic distributions of different asymmetric projectiles produced in
peripheral reactions are found very similar. The similarity of the
distributions are related to the similar proton and neutron density
distributions inside the nucleus in framework of the SAA model.Comment: 7 pages, 4 figures; to be published in Phys Rev
Quantum systems in weak gravitational fields
Fully covariant wave equations predict the existence of a class of
inertial-gravitational effects that can be tested experimentally. In these
equations inertia and gravity appear as external classical fields, but, by
conforming to general relativity, provide very valuable information on how
Einstein's views carry through in the world of the quantum.Comment: 22 pages. To be published in Proceedings of the 17th Course of the
International School of Cosmology and Gravitation "Advances in the interplay
between quantum and gravity physics" edited by V. De Sabbata and A.
Zheltukhin, Kluwer Academic Publishers, Dordrech
Phenomenological Scaling of Rapidity Dependence for Anisotropic Flows in 25 MeV/nucleon Ca + Ca by Quantum Molecular Dynamics Model
Anisotropic flows (, , and ) of light fragments up till
the mass number 4 as a function of rapidity have been studied for 25
MeV/nucleon Ca + Ca at large impact parameters by Quantum
Molecular Dynamics model. A phenomenological scaling behavior of rapidity
dependent flow parameters (n = 1, 2, 3 and 4) has been found as a
function of mass number plus a constant term, which may arise from the
interplay of collective and random motions. In addition, keeps
almost independent of rapidity and remains a rough constant of 1/2 for all
light fragments.Comment: 4 pages, 5 figure
The calculation of total reaction cross sections induced by intermediate energy -particles with BUU Model
The Boltzmann-Uehling-Uhlenbeck (BUU) Model, which includes the Fermi motion,
the mean field, individual nucleon-nucleon (N-N) interactions and the Pauli
blocking effect etc., is used to calculate the total reaction cross section
induced by -particles on different targets in the incident
energy range from 17.4 to 48.1 MeV/u. The calculation result can reproduce the
experimental data well. The nucleus-nucleus interaction radius parameter
was extracted from experimental . It is found that becomes
constant with increasing the mass number of target.Comment: 4 pages, 4 fig
Parallel momentum distribution of the Si fragments from P
Distribution of the parallel momentum of Si fragments from the breakup
of 30.7 MeV/nucleon P has been measured on C targets. The distribution
has the FWHM with the value of 110.5 23.5 MeV/c which is consistent
quantitatively with Galuber model calculation assuming by a valence proton in
P. The density distribution is also predicted by Skyrme-Hartree-Fock
calculation. Results show that there might exist the proton-skin structure in
P.Comment: 4 pages, 4 figure
Density dependence of the "symmetry energy" in the lattice gas model
Isoscaling behavior of the statistical emission fragments from the
equilibrated sources with = 30 and = 30, 33, 36 and 39, resepectively,
is investigated in the framework of isospin dependent lattice gas model. The
dependences of isoscaling parameters on source isospin asymmetry,
temperature and freeze-out density are studied and the "symmetry energy" is
deduced from isoscaling parameters. Results show that "symmetry energy"
is insensitive to the change of temperature but follows the power-law
dependence on the freeze-out density . The later gives =
30 if the suitable asymmetric nucleon-nucleon potential
is taken. The effect of strength of asymmetry of nucleon-nucleon interaction
potential on the density dependence of the "symmetry energy" is dicussed.Comment: 5 pages, 4 page
Scaling of Anisotropic Flows and Nuclear Equation of State in Intermediate Energy Heavy Ion Collisions
Elliptic flow () and hexadecupole flow () of light clusters have
been studied in details for 25 MeV/nucleon Kr + Sn at large
impact parameters by Quantum Molecular Dynamics model with different potential
parameters. Four parameter sets which include soft or hard equation of state
(EOS) with/without symmetry energy term are used. Both number-of-nucleon ()
scaling of the elliptic flow versus transverse momentum () and the scaling
of versus have been demonstrated for the light clusters
in all above calculation conditions. It was also found that the ratio of
keeps a constant of 1/2 which is independent of for all the
light fragments. By comparisons among different combinations of EOS and
symmetry potential term, the results show that the above scaling behaviors are
solid which do not depend the details of potential, while the strength of flows
is sensitive to EOS and symmetry potential term.Comment: 5 pages, 5 figure
Reciprocal facilitation between annual plants and burrowing crabs:Implications for the restoration of degraded saltmarshes
Increasing evidence shows that facilitative interactions between species play an essential role in coastal wetland ecosystems. However, there is a lack of understanding of how such interactions can be used for restoration purposes in saltmarsh ecosystems. We therefore studied the mechanisms of reciprocal facilitative interactions between native annual plants, Suaeda salsa, and burrowing crabs, Helice tientsinensis, in a middle-elevation saltmarsh (with generally high plant density and moderate tides) in the Yellow River Delta of China. We investigated the relationship between the densities of the plants and crab burrows in different seasons. Then, we tested whether and how saltmarsh plants and crabs indeed facilitate each other in a series of field and laboratory experiments. Finally, we applied the results by creating a field-scale artificial approach for microtopographic modification to restore a degraded saltmarsh. We found that the density of plant seedlings in spring was positively correlated with the density of crab burrows in the previous autumn; moreover, the density of crab burrows was correlated with the density of plants in summer. The concave-convex surface microtopography created by crabs promoted seed retention and seedling establishment of saltmarsh plants in winter and spring. These plants in turn facilitated crabs by inhibiting predators, providing food and reducing physical stresses for crabs in summer and autumn. The experimental removal of saltmarsh plants decreased crab burrow density, while both transplanting and simulating plants in bare patches promoted crabs. The microtopographic modification, inspired by our new understanding of the interactions between saltmarsh plants and crabs, showed that these degraded saltmarsh ecosystems can be restored by a single ploughing intervention. Synthesis. Our results suggest a reciprocal facilitation between annual plants and burrowing crabs in a middle-elevation saltmarsh ecosystem. This knowledge yielded new restoration options for degraded coastal saltmarshes through the one-time ploughing initiation of microtopographic variation, which could promote the re-establishment of ecosystem engineers and lead to the efficient recovery of pioneer coastal vegetation and associated fauna
Purkinje-cell-specific MeCP2 deficiency leads to motor deficits and autistic-like behavior due to aberrations in PTP1B-TrkB-SK signaling
Patients with Rett syndrome suffer from a loss-of-function mutation of the Mecp2 gene, which results in various symptoms including autistic traits and motor deficits. Deletion of Mecp2 in the brain mimics part of these symptoms, but the specific function of methyl-CpG-binding protein 2 (MeCP2) in the cerebellum remains to be elucidated. Here, we demonstrate that Mecp2 deletion in Purkinje cells (PCs) reduces their intrinsic excitability through a signaling pathway comprising the small-conductance calcium-activated potassium channel PTP1B and TrkB, the receptor of brain-derived neurotrophic factor. Aberration of this cascade, in turn, leads to autistic-like behaviors as well as reduced vestibulocerebellar motor learning. Interestingly, increasing activity of TrkB in PCs is sufficient to rescue PC dysfunction and abnormal motor and non-motor behaviors caused by Mecp2 deficiency. Our findings highlight how PC dysfunction may contribute to Rett syndrome, providing insight into the underlying mechanism and paving the way for rational therapeutic designs.</p
- …