49 research outputs found

    The Classical and Quantum Theory of Relativistic p-Branes without Constraints

    Get PDF
    It is shown that a relativistic (i.e. a Poincar{\' e} invariant) theory of extended objects (called p-branes) is not necessarily invariant under reparametrizations of corresponding pp-dimensional worldsheets (including worldlines for p=0p = 0). Consequnetly, no constraints among the dynamical variables are necessary and quantization is straightforward. Additional degrees of freedom so obtained are given a physical interpretation as being related to membrane's elastic deformations ("wiggleness"). In particular, such a more general, unconstrained theory implies as solutions also those p-brane states that are solutions of the conventional theory of the Dirac-Nambu-Goto type.Comment: 21 page

    Noncommutative spaces, the quantum of time and the Lorentz symmetry

    Get PDF
    We introduce three space-times that are discrete in time and compatible with the Lorentz symmetry. We show that these spaces are no commutative, with commutation relations similar to the relations of the Snyder and Yang spaces. Furthermore, using a reparametrized relativistic particle we obtain a realization of the Snyder type spaces and we construct an action for them.Comment: 8 pages, to appear in PR

    Consistent histories of systems and measurements in spacetime

    Full text link
    Traditional interpretations of quantum theory in terms of wave function collapse are particularly unappealing when considering the universe as a whole, where there is no clean separation between classical observer and quantum system and where the description is inherently relativistic. As an alternative, the consistent histories approach provides an attractive "no collapse" interpretation of quantum physics. Consistent histories can also be linked to path-integral formulations that may be readily generalized to the relativistic case. A previous paper described how, in such a relativistic spacetime path formalism, the quantum history of the universe could be considered to be an eignestate of the measurements made within it. However, two important topics were not addressed in detail there: a model of measurement processes in the context of quantum histories in spacetime and a justification for why the probabilities for each possible cosmological eigenstate should follow Born's rule. The present paper addresses these topics by showing how Zurek's concepts of einselection and envariance can be applied in the context of relativistic spacetime and quantum histories. The result is a model of systems and subsystems within the universe and their interaction with each other and their environment.Comment: RevTeX 4; 37 pages; v2 is a revision in response to reviewer comments, connecting the discussion in the paper more closely to consistent history concepts; v3 has minor editorial corrections; accepted for publication in Foundations of Physics; v4 has a couple minor typographical correction

    On the Resolution of Time Problem in Quantum Gravity Induced from Unconstrained Membranes

    Get PDF
    The relativistic theory of unconstrained pp-dimensional membranes (pp-branes) is further developed and then applied to the embedding model of induced gravity. Space-time is considered as a 4-dimensional unconstrained membrane evolving in an NN-dimensional embedding space. The parameter of evolution or the evolution time τ\tau is a distinct concept from the coordinate time t=x0t = x^0. Quantization of the theory is also discussed. A covariant functional Schr\" odinger equations has a solution for the wave functional such that it is sharply localized in a certain subspace PP of space-time, and much less sharply localized (though still localized) outside PP. With the passage of evolution the region PP moves forward in space-time. Such a solution we interpret as incorporating two seemingly contradictory observations: (i) experiments clearly indicate that space-time is a continuum in which events are existing; (ii) not the whole 4-dimensional space-time, but only a 3-dimensional section which moves forward in time is accessible to our immediate experience. The notorious problem of time is thus resolved in our approach to quantum gravity. Finally we include sources into our unconstrained embedding model. Possible sources are unconstrained worldlines which are free from the well known problem concerning the Maxwell fields generated by charged unconstrained point particles.Comment: 22 Page

    Boson-fermion unification, superstrings, and Bohmian mechanics

    Full text link
    Bosonic and fermionic particle currents can be introduced in a more unified way, with the cost of introducing a preferred spacetime foliation. Such a unified treatment of bosons and fermions naturally emerges from an analogous superstring current, showing that the preferred spacetime foliation appears only at the level of effective field theory, not at the fundamental superstring level. The existence of the preferred spacetime foliation allows an objective definition of particles associated with quantum field theory in curved spacetime. Such an objective definition of particles makes the Bohmian interpretation of particle quantum mechanics more appealing. The superstring current allows a consistent Bohmian interpretation of superstrings themselves, including a Bohmian description of string creation and destruction in terms of string splitting. The Bohmian equations of motion and the corresponding probabilistic predictions are fully relativistic covariant and do not depend on the preferred foliation.Comment: 30 pages, 1 figure, revised, to appear in Found. Phy

    Relativistic Many-Body Systems: Evolution Parameter Formalism

    No full text
    The complexity of the field theoretic methods used for analyzing relativistic bound state problems has forced researchers to look for simpler computational methods. Simpler methods such as the relativistic harmonic oscillator method employed in the description of extended hadrons have been investigated. They are considered phenomenological, however, because they lack a theoretical basis. A probabilistic basis for these methods is presented here in terms of the four-space formulation of relativistic quantum mechanics (FSF). The single-particle FSF is reviewed and its physical meaning is examined. The many-body single-parameter formalism is then developed. Applications are presented to illustrate use of the many-body formalism and demonstrate the ease with which relativistic bound state problems can be handled. A multiple-parameter formalism is constructed in the Appendix

    A predictive model of enhanced oil recovery by infill drilling and its application

    No full text

    Performance Estimation of Water Flooding in Oil Recovery

    No full text
    corecore