520 research outputs found

    Myocardial bridging in adult and pediatric patients with hypertrophic cardiomyopathy is not associated with poor outcome

    Get PDF

    The FAST-AIMS Clinical Mass Spectrometry Analysis System

    Get PDF
    Within clinical proteomics, mass spectrometry analysis of biological samples is emerging as an important high-throughput technology, capable of producing powerful diagnostic and prognostic models and identifying important disease biomarkers. As interest in this area grows, and the number of such proteomics datasets continues to increase, the need has developed for efficient, comprehensive, reproducible methods of mass spectrometry data analysis by both experts and nonexperts. We have designed and implemented a stand-alone software system, FAST-AIMS, which seeks to meet this need through automation of data preprocessing, feature selection, classification model generation, and performance estimation. FAST-AIMS is an efficient and user-friendly stand-alone software for predictive analysis of mass spectrometry data. The present resource review paper will describe the features and use of the FAST-AIMS system. The system is freely available for download for noncommercial use

    Utility of continuous wave doppler echocardiography in the noninvasive assessment of left ventricular outflow tract pressure gradient in patients with hypertrophic cardiomyopathy

    Get PDF
    AbstractSubaortic obstruction is an important determinant of the clinical presentation of and therapeutic approach to patients with hypertrophic cardiomyopathy. Therefore, assessment of the presence and magnitude of the intraventricular pressure gradient is paramount in the clinical evaluation of these patients. To establish the utility of continuous wave Doppler echocardiography in a sessing the pressure gradient in hypertrophic cardiomyopathy, 28 patients representing the wide hemodynamic spectrum of this disease underwent simultaneous determination of the subaortic gradient by continuous wave Doppler ultrasound and cardiac calheterization.With use of the modified Bernoulli equation, the Doppler-estimated gradient showed a strong correlation with the maximal instantaneous pressure difference measured at catheterization, both under basal conditions (r = 0.93; p < 0.0001) and during provocative maneuvers (r = 0.89; p < 0.9001). In 26 of she 28 patients, all assessments of the subaortic gradient were in agreement within 15 mm Hg (average difference 5 ± 3 mm Hg). In the other two patients there were substantial differences between these measurements (under basal conditions in one patient and after provocation in another), although the Doppler technique predicted the presence of marked subaortic obstruction in each. In both patients the erroneous interpretation was due to superimposition of the mitral regurgitation signal on that of left ventricular outflow.Doppler waveforms from the left ventricular outflow tract showed variability in contour among different patients and in individual patients. Hence, continuous wave Doppler echocardiography is a useful noninvasive method for estimating the subaortic gradient in patients with hypertrophic cardiomyopathy. However, technical factors such as contamination of the outflow tract jet with that of mitral regurgitation and variability in waveform configuration may importantly influence such assessments of the subaortic gradient

    Myocardial bridging does not predict sudden death in children with hypertrophic cardiomyopathy but is associated with more severe cardiac disease

    Get PDF
    AbstractOBJECTIVESWe sought to examine the association between systolic compression of sections of epicardial coronary vessels (myocardial bridging) with myocardial perfusion abnormalities and clinical outcome in children with hypertrophic cardiomyopathy (HCM).BACKGROUNDIt has recently been suggested that myocardial bridging is an important cause of myocardial ischemia and sudden death in children with HCM.METHODSAngiograms from 57 children with HCM were reviewed for the presence of bridging (50% or more maximum systolic arterial compression). QT interval indices, echocardiographic and cardiac catheterization findings, treadmill exercise tests, exercise thallium scintigraphy, Holter monitoring and electrophysiologic study findings were compared in children with and without bridging. The findings were also related to the presence or absence of compression of septal branches of the left anterior descending artery (LAD).RESULTSBridging was present in 23 (40%) of the children. Multiple coronary arteries were involved in four children. Bridging involved the LAD in 16 of 28 (57%) affected vessels. Myocardial perfusion abnormalities were present in 14 of 30 (47%) children without bridging and in 17 of 22 (94%) children with bridging, p = 0.002. However, bridging was associated with more severe septal hypertrophy (19 ± 8 mm vs. 28 ± 8 mm, p < 0.001), a higher septum:posterior wall thickness ratio (2.7 ± 1.2 vs. 1.8 ± 0.9, p < 0.001), and higher left ventricle (LV) outflow gradient (45 ± 37 mm Hg vs. 16 ± 28 mm Hg, p = 0.002). Compression of septal LAD branches was present in 37 (65%) of the children and was significantly associated with bridging, severity of LV hypertrophy and outflow obstruction. Multivariate analysis demonstrated that LV septal thickness and septal branch compression, and not bridging, were independent predictors of thallium perfusion abnormalities. There was a 90% power at 5% significance to detect an effect of bridging on thallium abnormalities at an odds ratio of 3. Bridging was also not associated with significantly greater symptoms, increased QT and QTc intervals and QTc dispersion, ventricular tachycardia on Holter or induced at EP study, or a worse prognosis.CONCLUSIONSBridging and compression of septal branches of the LAD are common in HCM children and are related to magnitude of LV hypertrophy. Left ventricular hypertrophy and compression of intramyocardial branches of the epicardial coronary arteries may contribute to myocardial perfusion abnormalities. Our findings suggest that bridging does not result in myocardial ischemia and may not cause arrhythmias or sudden death in HCM children

    Consensus report from the 9th International Forum for Liver Magnetic Resonance Imaging: applications of gadoxetic acid-enhanced imaging

    Get PDF
    Objectives The 9th International Forum for Liver Magnetic Resonance Imaging (MRI) was held in Singapore in September 2019, bringing together radiologists and allied specialists to discuss the latest developments in and formulate consensus statements for liver MRI, including the applications of gadoxetic acid-enhanced imaging. Methods As at previous Liver Forums, the meeting was held over 2 days. Presentations by the faculty on days 1 and 2 and breakout group discussions on day 1 were followed by delegate voting on consensus statements presented on day 2. Presentations and discussions centered on two main meeting themes relating to the use of gadoxetic acid-enhanced MRI in primary liver cancer and metastatic liver disease. Results and conclusions Gadoxetic acid-enhanced MRI offers the ability to monitor response to systemic therapy and to assist in pre-surgical/pre-interventional planning in liver metastases. In hepatocellular carcinoma, gadoxetic acid-enhanced MRI provides precise staging information for accurate treatment decision-making and follow-up post therapy. Gadoxetic acid-enhanced MRI also has potential, currently investigational, indications for the functional assessment of the liver and the biliary system. Additional voting sessions at the Liver Forum debated the role of multidisciplinary care in the management of patients with liver disease, evidence to support the use of abbreviated imaging protocols, and the importance of standardizing nomenclature in international guidelines in order to increase the sharing of scientific data and improve the communication between centers

    Implantable cardioverter defibrillator therapy in pediatric and congenital heart disease patients: a single tertiary center experience in Korea

    Get PDF
    PurposeThe use of implantable cardioverter defibrillators (ICDs) to prevent sudden cardiac death is increasing in children and adolescents. This study investigated the use of ICDs in children with congenital heart disease.MethodsThis retrospective study was conducted on the clinical characteristics and effectiveness of ICD implantation at the department of pediatrics of a single tertiary center between 2007 and 2011.ResultsFifteen patients underwent ICD implantation. Their mean age at the time of implantation was 14.5±5.4 years (range, 2 to 22 years). The follow-up duration was 28.9±20.4 months. The cause of ICD implantation was cardiac arrest in 7, sustained ventricular tachycardia in 6, and syncope in 2 patients. The underlying disorders were as follows: ionic channelopathy in 6 patients (long QT type 3 in 4, catecholaminergic polymorphic ventricular tachycardia [CPVT] in 1, and J wave syndrome in 1), cardiomyopathy in 5 patients, and postoperative congenital heart disease in 4 patients. ICD coils were implanted in the pericardial space in 2 children (ages 2 and 6 years). Five patients received appropriate ICD shock therapy, and 2 patients received inappropriate shocks due to supraventricular tachycardia. During follow-up, 2 patients required lead dysfunction-related revision. One patient with CPVT suffered from an ICD storm that was resolved using sympathetic denervation surgery.ConclusionThe overall ICD outcome was acceptable in most pediatric patients. Early diagnosis and timely ICD implantation are recommended for preventing sudden death in high-risk children and patients with congenital heart disease
    corecore