28,319 research outputs found
Partial Consistency with Sparse Incidental Parameters
Penalized estimation principle is fundamental to high-dimensional problems.
In the literature, it has been extensively and successfully applied to various
models with only structural parameters. As a contrast, in this paper, we apply
this penalization principle to a linear regression model with a
finite-dimensional vector of structural parameters and a high-dimensional
vector of sparse incidental parameters. For the estimators of the structural
parameters, we derive their consistency and asymptotic normality, which reveals
an oracle property. However, the penalized estimators for the incidental
parameters possess only partial selection consistency but not consistency. This
is an interesting partial consistency phenomenon: the structural parameters are
consistently estimated while the incidental ones cannot. For the structural
parameters, also considered is an alternative two-step penalized estimator,
which has fewer possible asymptotic distributions and thus is more suitable for
statistical inferences. We further extend the methods and results to the case
where the dimension of the structural parameter vector diverges with but slower
than the sample size. A data-driven approach for selecting a penalty
regularization parameter is provided. The finite-sample performance of the
penalized estimators for the structural parameters is evaluated by simulations
and a real data set is analyzed
Recommended from our members
Hydrodynamic Analysis of Binary Immiscible Metallurgical Flow in a Novel Mixing Process: Rheomixing
This paper presents a hydrodynamic analysis of binary immiscible metallurgical flow by a numerical simulation of the rheomixing process. The concept of multi-controll is proposed for classifying complex processes and identifying individual processes in an immiscible alloy system in order to perform simulations. A brief review of fabrication methods for immiscible alloys is given, and fluid flow aspects of a novel fabrication method – rheomixing by twin-screw extruder (TSE) are analysed. Fundamental hydrodynamic micro-mechanisms in a TSE are simulated by a piecewise linear (PLIC) volume-of-fluid (VOF) method coupled with the continuum surface force (CFS) algorithm. This revealed that continuous reorientation in the TSE process could produce fine droplets and the best mixing efficiency. It is verified that TSE is a better mixing device than single screw extruder (SSE) and can achieve finer droplets. Numerical results show good qualitative agreement with experimental results. It is concluded that rheomixing by a TSE can be successfully employed for casting immiscible engineering alloys due to its unique characteristics of reorientation and surface renewal
Recommended from our members
Numerical analysis of the hydrodynamic behaviour of immiscible metallic alloys in twin-screw rheomixing process
A numerical analysis by a VOF method is presented for studying the hydrodynamic mechanisms of the rheomixing process by a twin-screw extruder (TSE). The simplified flow field is established based on a systematic analysis of flow features of immiscible alloys in TSE rheomixing process. The studies focus on the fundamental microstructure mechanisms of rheological behaviour in shear-induced turbulent flows. It is noted that the microstructure of immiscible alloys in the mixing process is strongly influenced by the interaction between droplets, which is controlled by shearing forces, viscosity ratio, turbulence, and shearing time. The numerical results show a good qualitative agreement with the experimental results, and are useful for further optimisation design of prototypical rheomixing processes
- …