2,595 research outputs found
Microstructure and mechanical properties of ductile aluminium alloy manufactured by recycled materials
The present paper introduces the microstructure and mechanical properties of the Al-Mg- Si-Mn alloy made by recycled materials, in which the impurity levels of iron are mainly concerned. It is found that the increased Fe content reduces the ductility and yield strength but slightly increases the UTS of the diecast alloy. The tolerable Fe content is 0.45wt.%, at which the recycled alloys are still able to produce castings with the mechanical properties of yield strength over 140MPa, UTS over 280MPa and elongation over 15%.The Fe content is steadily accumulated in the alloy with the increase of recycle times. However, after 13 cycles, the recycled alloys are still able to produce ductile alloys with satisfied mechanical properties.The TSB (UK
Public knowledge of how to use an automatic external defibrillator in out-of-hospital cardiac arrest in Hong Kong
published_or_final_versio
Connecting to smart cities : analyzing energy times series to visualize monthly electricity peak load in residential buildings
Rapidly growing energy consumption rate is considered an alarming threat to economic stability and environmental sustainability. There is an urgent need of proposing novel solutions to mitigate the drastic impact of increased energy demand in urban cities to improve energy efficiency in smart buildings. It is commonly agreed that exploring, analyzing and visualizing energy consumption patterns in residential buildings can help to estimate their energy demands. Moreover, visualizing energy consumption patterns of residential buildings can also help to diagnose if there is any unpredictable increase in energy demand at a certain time period. However, visualizing and inferring energy consumption patterns from typical line graphs, bar charts, scatter plots is obsolete, less informative and do not provide deep and significant insight of the daily domestic demand of energy utilization. Moreover, these methods become less significant when high temporal resolution is required. In this research work, advanced data exploratory and data analytics techniques are applied on energy time series. Data exploration results are presented in the form of heatmap. Heatmap provides a significant insight of energy utilization behavior during different times of the day. Heatmap results are articulated from three analytical perspectives; descriptive analysis, diagnostic analysis and contextual analysis
Designer SiO2 Metasurfaces for Efficient Passive Radiative Cooling
In recent years, an increasing number of passive radiative cooling materials are proposed in the literature, with several examples relying on the use of silica (SiO2) due to its unique stability, non-toxicity, and availability. Nonetheless, due to its bulk phonon-polariton band, SiO2 presents a marked reflection peak within the atmospheric transparency window (8-13 mu m), leading to an emissivity decrease that poses a challenge to fulfilling the criteria for sub-ambient passive radiative cooling. Thus, the latest developments in this field are devoted to the design of engineered SiO2 photonic structures, to increase the cooling potential of bulk SiO2 radiative coolers. This review seeks to identify the most effective photonic design and fabrication strategies for SiO2 radiative emitters by evaluating their cooling efficacy, as well as their scalability, providing an in-depth analysis of the fundamental principles, structural models, and results (both numerical and experimental) of various types of SiO2 radiative coolers
Melanosis coli: Harmless pigmentation? A case-control retrospective study of 657 cases
published_or_final_versio
Primary omental fibromatosis presenting as an incarcerated inguinal hernia: Case report from a single institution over 20 years
This paper has been presented in 12th International Congress of Asia-Pacific Hernia Society in Tokyo, Japan during period of 27th–28th October, 2016
Pixel and Voxel Representations of Graphs
We study contact representations for graphs, which we call pixel
representations in 2D and voxel representations in 3D. Our representations are
based on the unit square grid whose cells we call pixels in 2D and voxels in
3D. Two pixels are adjacent if they share an edge, two voxels if they share a
face. We call a connected set of pixels or voxels a blob. Given a graph, we
represent its vertices by disjoint blobs such that two blobs contain adjacent
pixels or voxels if and only if the corresponding vertices are adjacent. We are
interested in the size of a representation, which is the number of pixels or
voxels it consists of.
We first show that finding minimum-size representations is NP-complete. Then,
we bound representation sizes needed for certain graph classes. In 2D, we show
that, for -outerplanar graphs with vertices, pixels are
always sufficient and sometimes necessary. In particular, outerplanar graphs
can be represented with a linear number of pixels, whereas general planar
graphs sometimes need a quadratic number. In 3D, voxels are
always sufficient and sometimes necessary for any -vertex graph. We improve
this bound to for graphs of treewidth and to
for graphs of genus . In particular, planar graphs
admit representations with voxels
Strain Heterogeneity and Extended Defects in Halide Perovskite Devices.
Strain is an important property in halide perovskite semiconductors used for optoelectronic applications because of its ability to influence device efficiency and stability. However, descriptions of strain in these materials are generally limited to bulk averages of bare films, which miss important property-determining heterogeneities that occur on the nanoscale and at interfaces in multilayer device stacks. Here, we present three-dimensional nanoscale strain mapping using Bragg coherent diffraction imaging of individual grains in Cs0.1FA0.9Pb(I0.95Br0.05)3 and Cs0.15FA0.85SnI3 (FA = formamidinium) halide perovskite absorbers buried in full solar cell devices. We discover large local strains and striking intragrain and grain-to-grain strain heterogeneity, identifying distinct islands of tensile and compressive strain inside grains. Additionally, we directly image dislocations with surprising regularity in Cs0.15FA0.85SnI3 grains and find evidence for dislocation-induced antiphase boundary formation. Our results shine a rare light on the nanoscale strains in these materials in their technologically relevant device setting
Why I tense up when you watch me: inferior parietal cortex mediates an audience’s influence on motor performance
The presence of an evaluative audience can alter skilled motor performance through changes in force output. To investigate how this is mediated within the brain, we emulated real-time social monitoring of participants’ performance of a fine grip task during functional magnetic resonance neuroimaging. We observed an increase in force output during social evaluation that was accompanied by focal reductions in activity within bilateral inferior parietal cortex. Moreover, deactivation of the left inferior parietal cortex predicted both inter- and intra-individual differences in socially-induced change in grip force. Social evaluation also enhanced activation within the posterior superior temporal sulcus, which conveys visual information about others’ actions to the inferior parietal cortex. Interestingly, functional connectivity between these two regions was attenuated by social evaluation. Our data suggest that social evaluation can vary force output through the altered engagement of inferior parietal cortex; a region implicated in sensorimotor integration necessary for object manipulation, and a component of the action-observation network which integrates and facilitates performance of observed actions. Social-evaluative situations may induce high-level representational incoherence between one’s own intentioned action and the perceived intention of others which, by uncoupling the dynamics of sensorimotor facilitation, could ultimately perturbe motor output
Clinicopathological significance of homeoprotein Six1 in hepatocellular carcinoma
Tumour recurrence and metastases of hepatocellular carcinoma (HCC) after hepatectomy are the major obstacles of long-term survival. The present study investigated the clinicopathological significance of a possible metastasis regulator Six1 in HCC patients who were undergone hepatectomy. Seventy-two pairs of RNA and 103 pairs of protein from tumour and adjacent nontumour liver tissues of HCC patients were examined. About 85 and 60% of HCC tumour tissues were found to overexpress Six1 mRNA and protein, respectively, compared with nontumour liver tissues. No Six1 protein was detected in HCC nontumour liver tissues and normal liver tissues. Increased Six1 protein expression in HCC patients was significantly correlated with pathologic tumour-node-metastasis (pTNM) stage (P=0.002), venous infiltration (P=0.004) and poor overall survival (P=0.0423). We concluded that Six1 is frequently overexpressed in HCC patients and elevated Six1 protein in HCC patients may be an indication of advanced stage and poor overall survival after hepatectomy
- …