41 research outputs found

    Performance evaluation of AODV, DSR and DSDV in mobile ad-hoc network using NS-2

    Full text link
    Mobile ad-hoc network (MANET) is a set of movable hosts established without existing network infrastructure and can be self-organized dynamically. MANET protocols have faced big challenges due to dynamic changing network topology and asymmetric network link. In this paper, we simulate AODV, DSDV, DSR routing protocols in network simulator NS-2 and evaluate and compare the performance metrics for each routing protocol using packet delivery ratio, average end to end delay of packets and normalized routing overhead. We conduct the simulation by varying the sending rate of source node (2 packets/s and 4 packets/s) with different pause time using node movement model and cbr source traffic model

    Numerical simulation on the aerodynamic performance of the high-speed train under crosswinds

    Get PDF
    With the continuously increased speed of the high-speed train, the lateral aerodynamic performance of high-speed trains has attracted more and more attention. Under strong crosswinds, the aerodynamic performance of trains deteriorate and air drag, lift and lateral forces borne by trains quickly increase, which has an impact on the lateral stability of trains and even leads to train derailment. This paper adopted computational fluid dynamics theory to establish an aerodynamic model for a high-speed train, computed aerodynamic forces and moments acting on the high-speed train and obtained the unsteady flow field of the high-speed train. In the meanwhile, this paper combined with multi-body system dynamics theory to establish a system dynamics model for the train and analyzed the safe aerodynamic performance of the high-speed train under cross winds. Computational results showed: Under cross winds, the aerodynamic performance of the high-speed train had a random fluctuation. When wind direction angle was 90°, aerodynamic forces (drag, lift and lateral forces) and moments (overturning moment, shaking moment and nodding moment) borne by the high-speed train were the largest; train speed was a main factor affecting the size of positive pressures of train and cross wind velocity had no obvious impacts on the positive and negative pressures of train body; the aerodynamic forces and moments of the high-speed train had a random fluctuation within a certain range with time; the frequency for the peak value of power spectral density of lateral forces of head train was within 25 Hz and the peak value of power spectral density was the largest when the main frequency was 1.6 Hz; the frequency for the peak value of power spectral density of overturning moment of head train was within 20 Hz and main frequency was 0.57 Hz. When the cross wind speed was 15 m/s, all safety indexes of the high-speed train running at the speed of 250 km/h were within the range of limited values and satisfied design requirements. Aerodynamic performance of the high-speed train with the suction chamber under the cross wind was computed and compared with original results. Aerodynamic force and force moments of the high-speed train under cross wind will be reduced obviously and running safety of the high-speed train can be improved through application of the suction chamber

    比利时

    Full text link
    peer reviewedUltra-performance convergence chromatography is an environmentally-friendly analytical method that uses dramatically reduced amounts of organic solvents. In addition, a robust and highly sensitive chiral separation method was developed for the novel chiral acaricide cyflumetofen by using ultra-performance convergence chromatography coupled with tandem mass spectrometry, which shows that stereoisomer recoveries determined for various apple parts ranged from 78.3% to 119.9%, with the relative standard deviations being lower than 14.0%. The half-lives of (-)-cyflumetofen and (+)-cyflumetofen obtained under 5-fold applied dosage equal to 22.13 and 22.23 days, respectively. For 1.5-fold applied dosage, the respective values were determined as 22.42 and 23.64 days, i.e., the degradation of (-)-cyflumetofen was insignificantly favored over that of its enantiomer. Importantly, cyflumetofen was unevenly distributed in apples, with its relative contents in apple peel, peduncle, and pomace equal to 50%, 22%, and 16%, respectively. The proposed method can be used to efficiently separate and quantify chiral pesticide with advantages of a shorter analysis time, greater sensitivity, and better environmental compatibility. Additionally, the consumption of apples with residue of cyflumetofen did not pose a health risk to the population if the cyflumetofen applied under satisfactory agricultural practices after the long-term dietary risk assessment

    Performance evaluation of AODV, DSR and DSDV in mobile ad-hoc network using NS-2

    No full text
    Mobile ad-hoc network (MANET) is a set of movable hosts established without existing network infrastructure and can be self-organized dynamically. MANET protocols have faced big challenges due to dynamic changing network topology and asymmetric network link. In this paper, we simulate AODV, DSDV, DSR routing protocols in network simulator NS-2 and evaluate and compare the performance metrics for each routing protocol using packet delivery ratio, average end to end delay of packets and normalized routing overhead. We conduct the simulation by varying the sending rate of source node (2 packets/s and 4 packets/s) with different pause time using node movement model and cbr source traffic model

    Personal Identification Based on Brain Networks of EEG Signals

    No full text
    Personal identification is particularly important in information security. There are numerous advantages of using electroencephalogram (EEG) signals for personal identification, such as uniqueness and anti-deceptiveness. Currently, many researchers focus on single-dataset personal identification, instead of the cross-dataset. In this paper, we propose a method for cross-dataset personal identification based on a brain network of EEG signals. First, brain functional networks are constructed from the phase synchronization values between EEG channels. Then, some attributes of the brain networks including the degree of a node, the clustering coefficient and global efficiency are computed to form a new feature vector. Lastly, we utilize linear discriminant analysis (LDA) to classify the extracted features for personal identification. The performance of the method is quantitatively evaluated on four datasets involving different cognitive tasks: (i) a four-class motor imagery task dataset in BCI Competition IV (2008), (ii) a two-class motor imagery dataset in the BNCI Horizon 2020 project, (iii) a neuromarketing dataset recorded by our laboratory, (iv) a fatigue driving dataset recorded by our laboratory. Empirical results of this paper show that the average identification accuracy of each data set was higher than 0.95 and the best one achieved was 0.99, indicating a promising application in personal identification
    corecore