861 research outputs found

    Specific Beamforming for Multi-UAV Networks: A Dual Identity-based ISAC Approach

    Full text link
    Beam alignment is essential to compensate for the high path loss in the millimeter-wave (mmWave) Unmanned Aerial Vehicle (UAV) network. The integrated sensing and communication (ISAC) technology has been envisioned as a promising solution to enable efficient beam alignment in the dynamic UAV network. However, since the digital identity (D-ID) is not contained in the reflected echoes, the conventional ISAC solution has to either periodically feed back the D-ID to distinguish beams for multi-UAVs or suffer the beam errors induced by the separation of D-ID and physical identity (P-ID). This paper presents a novel dual identity association (DIA)-based ISAC approach, the first solution that enables specific, fast, and accurate beamforming towards multiple UAVs. In particular, the P-IDs extracted from echo signals are distinguished dynamically by calculating the feature similarity according to their prevalence, and thus the DIA is accurately achieved. We also present the extended Kalman filtering scheme to track and predict P-IDs, and the specific beam is thereby effectively aligned toward the intended UAVs in dynamic networks. Numerical results show that the proposed DIA-based ISAC solution significantly outperforms the conventional methods in association accuracy and communication performance.Comment: 7 pages, 8 figure

    Negative Magnetoresistance in Dirac Semimetal Cd3As2

    Get PDF
    A large negative magnetoresistance is anticipated in topological semimetals in the parallel magnetic and electric field configuration as a consequence of the nontrivial topological properties. The negative magnetoresistance is believed to demonstrate the chiral anomaly, a long-sought high-energy physics effect, in solid-state systems. Recent experiments reveal that Cd3As2, a Dirac topological semimetal, has the record-high mobility and exhibits positive linear magnetoresistance in the orthogonal magnetic and electric field configuration. However, the negative magnetoresistance in the parallel magnetic and electric field configuration remains unveiled. Here, we report the observation of the negative magnetoresistance in Cd3As2 microribbons in the parallel magnetic and electric field configuration as large as 66% at 50 K and even visible at room temperatures. The observed negative magnetoresistance is sensitive to the angle between magnetic and electrical field, robust against temperature, and dependent on the carrier density. We have found that carrier densities of our Cd3As2 samples obey an Arrhenius's law, decreasing from 3.0x10^17 cm^-3 at 300 K to 2.2x10^16 cm^-3 below 50 K. The low carrier densities result in the large values of the negative magnetoresistance. We therefore attribute the observed negative magnetoresistance to the chiral anomaly. Furthermore, in the perpendicular magnetic and electric field configuration a positive non-saturating linear magnetoresistance up to 1670% at 14 T and 2 K is also observed. This work demonstrates potential applications of topological semimetals in magnetic devices

    The possible role of ribosomal protein S6 kinase 4 in the senescence of endothelial progenitor cells in diabetes mellitus

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The decrease and dysfunction of endothelial progenitor cells (EPCs) has been assumed as an important cause/consequence of diabetes mellitus (DM) and its complications, in which the senescence of EPCs induced by hyperglycemia may play an immensurable role. However, the mechanisms of EPCs senescence has not been fully investigated. Recently, ribosomal protein S6 kinase 4 (RSK4), a member of serine/threomine (Ser/Thr) kinase family and p53-related gene, is reported to regulate the replicative and stress-induced senescence of different cells.</p> <p>Presentation of the hypothesis</p> <p>These above lead to consideration of an evidence-based hypothesis that RSK4 may serve as a mediator of EPCs senescence in DM.</p> <p>Testing the hypothesis</p> <p>EPCs of healthy subjects and DM patients are isolated from peripheral blood and incubated with high glucose (HG). Then, the EPCs senescence would be detected by senescence associated β-galactosides (SA-β-gal) staining. Meanwhile, the RSK4 expression is assessed by RT-PCR and western blot. Moreover, overexpressing or RNA interfering of RSK4 in EPCs to investigate the relationship between RSK4 expression and the senescence of EPCs are necessary to substantiate this hypothesis. Also, studies on possible upstream and downstream factors of RSK4 would be explored to reveal the RSK4-mediated senescence pathway in EPCs.</p> <p>Implications of the hypothesis</p> <p>If proved, this hypothesis will provide another mediator of EPCs senescence, and may establish a novel pathogenesis for DM and further benefit to the management of DM.</p
    corecore