6 research outputs found

    Evidence for both sequential mutations and recombination in the evolution of kdr alleles in Aedes aegypti.

    No full text
    BackgroundAedes aegypti is a globally distributed vector of human diseases including dengue, yellow fever, chikungunya, and Zika. Pyrethroid insecticides are the primary means of controlling adult A. aegypti populations to suppress arbovirus outbreaks, but resistance to pyrethroid insecticides has become a global problem. Mutations in the voltage-sensitive sodium channel (Vssc) gene are a major mechanism of pyrethroid resistance in A. aegypti. Vssc resistance alleles in A. aegypti commonly have more than one mutation. However, our understanding of the evolutionary dynamics of how alleles with multiple mutations arose is poorly understood.Methodology/principal findingsWe examined the geographic distribution and association between the common Vssc mutations (V410L, S989P, V1016G/I and F1534C) in A. aegypti by analyzing the relevant Vssc fragments in 25 collections, mainly from Asia and the Americas. Our results showed all 11 Asian populations had two types of resistance alleles: 1534C and 989P+1016G. The 1534C allele was more common with frequencies ranging from 0.31 to 0.88, while the 989P+1016G frequency ranged from 0.13 to 0.50. Four distinct alleles (410L, 1534C, 410L+1534C and 410L+1016I+1534C) were detected in populations from the Americas. The most common was 410L+1016I+1534C with frequencies ranging from 0.50 to 1.00, followed by 1534C with frequencies ranging from 0.13 to 0.50. Our phylogenetic analysis of Vssc supported multiple independent origins of the F1534C mutation. Our results indicated the 410L+1534C allele may have arisen by addition of the V410L mutation to the 1534C allele, or by a crossover event. The 410L+1016I+1534C allele was the result of one or two mutational steps from a 1534C background.Conclusions/significanceOur data corroborated previous geographic distributions of resistance mutations and provided evidence for both recombination and sequential accumulation of mutations contributing to the molecular evolution of resistance alleles in A. aegypti

    Monitoring the Methyl Eugenol Response and Non-Responsiveness Mechanisms in Oriental Fruit Fly Bactrocera dorsalis in China

    No full text
    Bactrocera dorsalis is a notorious polyphagous pest in China, and its management strategies largely depend on methyl eugenol (ME), which has been widely used as an attractant to monitor and eradicate B. dorsalis populations for seven decades. However, the non-responsiveness levels in field B. dorsalis populations to ME is unknown. In this study, we monitored the response to ME in field populations from the four most heavily infested provinces in China, and the results showed that the populations had lower sensitivity to ME relative to GZS susceptible strain. The percent responsiveness of the lowest sensitivity population was 5.88-, 3.47-, and 1.47-fold lower relative to the susceptible strain at doses of 1, 10, and 100 µL of ME, respectively. Gene expression analysis and inhibitor assays further revealed that odorant binding protein (BdorOBP2, BdorOBP83b) and the P450 enzyme system may be associated with the lower response to ME. To our knowledge, this work is the first to report that the P450 enzyme system confers a lower responsiveness to lure insects. These findings provided valuable insights for exploiting ME non-responsiveness to protect sterile males from ME-based control strategies and the use of lures combined with insecticides

    Use of Age-Stage, Two-Sex Life Table to Compare the Fitness of Bactrocera dorsalis (Diptera: Tephritidae) on Northern and Southern Host Fruits in China

    No full text
    Bactrocera dorsalis (Hendel), as a quarantine pest in many countries and regions, has shown a trend of northward diffusion in the past century in China. In order to determine whether B. dorsalis will cause great harm to the dominant northern fruits, the age-stage two-sex life tables of peaches and apples were constructed, with oranges as the control. The results showed that the developmental rate, intrinsic rate of increase (r), and finite rate of increase (λ) on oranges and peaches were significantly greater than on apples. Additionally, the prediction of population growth 90 days after oviposition revealed that the whole population on oranges and peaches increased by 13,667.3 and 12,112.1 times, respectively, indicating that B. dorsalis is very likely to endanger peach orchards. The population increased on apples by 4311 times, though this is lower than that on oranges and peaches. Overall, peaches with high fitness similar to oranges are very suitable as a host for B. dorsalis and are likely to become a new favorable host, while apples may also become a potentially new host, though with lower fitness. Therefore, the most pressing solutions to take are population monitoring, comprehensive prevention, and control in the case of any potential large-scale outbreak of B. dorsalis in northern China

    Potential for insecticide-mediated shift in ecological dominance between two competing aphid species

    No full text
    Competition is a key structuring component of biological communities, which is affected by both biotic and abiotic environmental stressors. Among the latter, anthropic stressors and particularly pesticides are noteworthy due to their intrinsic toxicity and large use in agroecosystems. However this issue has been scarcely documented so far. In this context, we carried out experiments under laboratory conditions to evaluate stress imposed by the neonicotinoid insecticide imidacloprid on intra and interspecific competition among two major wheat pest aphids. The bird cherry-oat aphid Rhopalosiphum padi L. and the English grain aphid Sitobion avenae F. were subjected to competition on wheat seedlings under varying density combinations of both species and subjected or not to imidacloprid exposure. Intraspecific competition does take place without insecticide exposure, but so does interspecific competition between both aphid species with R. padi prevailing over S. avenae. Imidacloprid interfered with both intra and interspecific competition suppressing the former and even the latter for up to 14 days, but not afterwards when a shift in dominance takes place favoring S. avenae over R. padi, in contrast with the interspecific competition without imidacloprid exposure. These findings hinted that insecticides are indeed able to mediate species interaction and competition influencing community structure and raising management concerns for favoring potential secondary pest outbreaks

    Sacral neuromodulation remote programming in patients with refractory lower urinary tract dysfunction: China鈥檚 experience during the COVID-19 pandemic

    Get PDF
    ObjectivesSacral neuromodulation is an effective, minimally invasive treatment for refractory lower urinary tract dysfunction. However, regular postoperative programming is crucial for the maintenance of the curative effects of electronic sacral stimulator devices. The outbreak of coronavirus disease 2019 (COVID-19) limited the ability of practitioners to perform traditional face-to-face programming of these stimulators. Therefore, this study aimed to evaluate the application of remote programming technology for sacral neuromodulation during the COVID-19 pandemic in China.Materials and methodsWe retrospectively collected data including baseline and programming information of all patients with lower urinary tract dysfunction who underwent sacral neuromodulation remote programming in China after the outbreak of COVID-19 (i.e., December 2019). The patients also completed a self-designed telephone questionnaire on the subject.ResultsA total of 51 patients from 16 centers were included. They underwent 180 total remote programming visits, and 118, 2, 25, and 54 voltage, current, pulse width, and frequency adjustments, respectively, were performed. Additionally, remote switching on and off was performed 8 times; impedance test, 54 times; and stimulation contact replacement, 25 times. The demand for remote programming was the highest during the first 6鈥塵onths of sacral neuromodulation (average, 2.39 times per person). In total, 36 out of the 51 patients completed the questionnaire survey. Of these, all indicated that they chose remote programming to minimize unnecessary travel because they had been affected by COVID-19. The questionnaire also showed that remote programming could reduce the number of patient visits to the hospital, save time, reduce financial costs, and would be easy for patients to master. All surveyed patients indicated that they were satisfied with remote programming and were willing to recommend it to other patients.ConclusionRemote programming for sacral neuromodulation is feasible, effective, safe, and highly recommended by patients with refractory lower urinary tract dysfunction. Remote programming technology has great development and application potential in the post-pandemic era
    corecore