90 research outputs found

    Extracellular matrix remodeling in the tumor immunity

    Get PDF
    The extracellular matrix (ECM) is a significant constituent of tumors, fulfilling various essential functions such as providing mechanical support, influencing the microenvironment, and serving as a reservoir for signaling molecules. The abundance and degree of cross-linking of ECM components are critical determinants of tissue stiffness. In the process of tumorigenesis, the interaction between ECM and immune cells within the tumor microenvironment (TME) frequently leads to ECM stiffness, thereby disrupting normal mechanotransduction and promoting malignant progression. Therefore, acquiring a thorough comprehension of the dysregulation of ECM within the TME would significantly aid in the identification of potential therapeutic targets for cancer treatment. In this regard, we have compiled a comprehensive summary encompassing the following aspects: (1) the principal components of ECM and their roles in malignant conditions; (2) the intricate interaction between ECM and immune cells within the TME; and (3) the pivotal regulators governing the onco-immune response in ECM

    Intranasal delivery of transforming growth factor-beta1 in mice after stroke reduces infarct volume and increases neurogenesis in the subventricular zone

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The effect of neurotrophic factors in enhancing stroke-induced neurogenesis in the adult subventricular zone (SVZ) is limited by their poor blood-brain barrier (BBB) permeability.</p> <p>Intranasal administration is a noninvasive and valid method for delivery of neuropeptides into the brain, to bypass the BBB. We investigated the effect of treatment with intranasal transforming growth factor-β1 (TGF-β1) on neurogenesis in the adult mouse SVZ following focal ischemia. The modified Neurological Severity Scores (NSS) test was used to evaluate neurological function, and infarct volumes were determined from hematoxylin-stained sections. Terminal deoxynucleotidyl transferase-mediated dUTP nick end labeling (TUNEL) labeling was performed at 7 days after middle cerebral artery occlusion (MCAO). Immunohistochemistry was used to detect bromodeoxyuridine (BrdU) and neuron- or glia-specific markers for identifying neurogenesis in the SVZ at 7, 14, 21, 28 days after MCAO.</p> <p>Results</p> <p>Intranasal treatment of TGF-β1 shows significant improvement in neurological function and reduction of infarct volume compared with control animals. TGF-β1 treated mice had significantly less TUNEL-positive cells in the ipsilateral striatum than that in control groups. The number of BrdU-incorporated cells in the SVZ and striatum was significantly increased in the TGF-β1 treated group compared with control animals at each time point. In addition, numbers of BrdU- labeled cells coexpressed with the migrating neuroblast marker doublecortin (DCX) and the mature neuronal marker neuronal nuclei (NeuN) were significantly increased after intranasal delivery of TGF-β1, while only a few BrdU labeled cells co-stained with glial fibrillary acidic protein (GFAP).</p> <p>Conclusion</p> <p>Intranasal administration of TGF-β1 reduces infarct volume, improves functional recovery and enhances neurogenesis in mice after stroke. Intranasal TGF-β1 may have therapeutic potential for cerebrovascular disorders.</p

    Public Environment Awareness in China: An Analysis of the Results of Public Surveys

    No full text
    Global Change. This Center has been created through a cooperative agreement between the Nationa

    Component-aware generative autoencoder for structure hybrid and shape completion

    No full text
    Assembling components of man-made objects to create new structures or complete 3D shapes is a popular approach in 3D modeling techniques. Recently, leveraging deep neural networks for assembly-based 3D modeling has been widely studied. However, exploring new component combinations even across different categories is still challenging for most of the deep-learning-based 3D modeling methods. In this paper, we propose a novel generative autoencoder that tackles the component combinations for 3D modeling of man-made objects. We use the segmented input objects to create component volumes that have redundant components and random configurations. By using the input objects and the associated component volumes to train the autoencoder, we can obtain an object volume consisting of components with proper quality and structure as the network output. Such a generative autoencoder can be applied to either multiple object categories for structure hybrid or a single object category for shape completion. We conduct a series of evaluations and experimental results to demonstrate the usability and practicability of our method

    Preparation of Photoirradiation Molecular Imprinting Polymer for Selective Separation of Branched Cyclodextrins

    No full text
    In the present study, photoirradiation molecularly imprinted polymer (MIP) with azobenzene was used as a functional monomer for the selective separation of the branched cyclodextrins. The functional monomer 4-methacryloyloxy azobenzene (MAA) and the molecular template 6-O-α-d-maltosyl-β-cyclodextrin (G2-β-CD) were implemented for the molecular imprinting. The core-shell structure of photoirradiation MIP was visualized by the transmission electron microscopy (TEM). With Fourier transform infrared spectroscopy (FTIR) and thermogravimetric analysis (TGA), we identified that G2-β-CD was imprinted into the polymer and removed from the MIP. The binding association constant (Ka) and the maximum number of the binding site (Nmax) were 1.72 × 104 M−1 and 7.93 μmol·g−1 MIP, respectively. With alternate irradiation at 365 and 440 nm light, the prepared MIP reversibly released and rebound to the G2-β-CD, which resulted in the nearly zero amount of G2-β-CD in the solution. The HPLC results indicated that the purity of G2-β-CD could reach 90.8% after going through MIP. The main finding of our study was that the photoirradiation of MIP was an easy and effective method for the selective separation of the branched cyclodextrins

    Effect of Age on Survival Outcome in Operated and Non-Operated Patients with Colon Cancer: A Population-Based Study.

    No full text
    To know the effect of age on survival outcome in operated and non-operated patients with colon cancer.From the Surveillance, Epidemiology, and End Results database, we identified 123,356 patients with colon cancer who were diagnosed between 1996 and 2005, grouped them as older or younger than 40 years and analyzed their 5-year cancer-specific survival (CSS) data, along with some risk factors, using Kaplan-Meier methods and multivariable Cox regression models.The younger group had significantly higher pathological grades (P<0.001), more mucinous and signet-ring histology (P<0.001), advanced AJCC stage (P<0.001), and were more likely to undergo surgery (P<0.001). For surgically treated patients, age did not significantly affect 5-year CSS (younger: 66.7%; older: 67.3%; P = 0.86). Further analysis showed that age was an independent prognostic factor in stage I-IV disease (stage I: P = 0.001; P<0.001 for stages II-IV, in both uni- and multivariate analyses), but not for patients with unknown disease stage (P = 0.52). For non-surgically treated patients, age significantly affected 5-year CSS (younger: 16.2%; older: 12.9%; P<0.001) in univariate analysis; and was an independent prognostic factor (P<0.001) in multivariate analysis.The CSS rate for younger CC patients was at least as high as for older patients, although they presented with higher proportions of unfavorable factors and more advanced disease
    corecore