96 research outputs found

    Interaction of Sedlin with chloride intracellular channel proteins

    Get PDF
    AbstractSedlin is an evolutionarily conserved protein encoded by the causative gene SEDL for spondyloepiphyseal dysplasia tarda. Nevertheless, how Sedlin mutations cause the disease remains unknown. Here, the intracellular chloride channel protein CLIC1 was shown to associate with Sedlin by yeast two-hybrid screening. Green fluorescence protein-CLIC1 readily co-immunoprecipitated with FLAG-Sedlin. In addition, both proteins colocalized extensively in cytoplasmic vesicular/reticular structures in COS-7 cells, suggesting their interaction at intracellular membranous organelles. Sedlin also associated with CLIC2 in yeast two-hybrid assays. The link between Sedlin and the intracellular chloride channels is the first step to understand their functional interplays

    Experimental Measurement and Numerical Modeling of the Creaming of mPCM Slurry

    Get PDF
    The slurry of mPCM has been widely used for enhancing heat transfer and reducing building energy consumption. Because of intrinsic density differences between mPCM and water, the slurry is subject to creaming phenomena. As a consequence the viscosity of slurry increases and the thermal properties decrease. Up to now no quantitative analysis about the creaming of mPCM has been done. In the paper experimental measurement and numerical modeling of the creaming of mPCM slurry is presented. Using the optical method, the temporal-spatial distribution of volume concentration is recorded. Based on the conservation model, the process of creaming has been simulated

    Dopamine dysregulation in a mouse model of paroxysmal nonkinesigenic dyskinesia.

    Get PDF
    Paroxysmal nonkinesigenic dyskinesia (PNKD) is an autosomal dominant episodic movement disorder. Patients have episodes that last 1 to 4 hours and are precipitated by alcohol, coffee, and stress. Previous research has shown that mutations in an uncharacterized gene on chromosome 2q33-q35 (which is termed PNKD) are responsible for PNKD. Here, we report the generation of antibodies specific for the PNKD protein and show that it is widely expressed in the mouse brain, exclusively in neurons. One PNKD isoform is a membrane-associated protein. Transgenic mice carrying mutations in the mouse Pnkd locus equivalent to those found in patients with PNKD recapitulated the human PNKD phenotype. Staining for c-fos demonstrated that administration of alcohol or caffeine induced neuronal activity in the basal ganglia in these mice. They also showed nigrostriatal neurotransmission deficits that were manifested by reduced extracellular dopamine levels in the striatum and a proportional increase of dopamine release in response to caffeine and ethanol treatment. These findings support the hypothesis that the PNKD protein functions to modulate striatal neuro-transmitter release in response to stress and other precipitating factors

    Research on seismic response of new lining structured of shallow double-arch tunnels under unsymmetrical pressure

    Get PDF
    A physical test model of a new lining structure for a shallow double-arch tunnels under unsymmetrical pressure with a scale of 1:20 was designed and manufactured. Kobe seismic waves and EI seismic waves were selected as the loading waves and a large-scale shaking table test was carried out. The acceleration and dynamic strain response of shallow double-arch tunnels under unsymmetrical pressure under different seismic wave types and seismic intensities are studied. The results show: Under different seismic wave excitations, only the horizontal acceleration amplification factor of the left-hole vault, right-hole invert and the top right of the mid-partition is less than 1, and the horizontal acceleration amplification factors of other measurement points are all greater than 1. The measurement points with relatively large horizontal acceleration response are the left-hole shoulder, the top left of the mid-partition, the right-hole vault and shoulder; The overall response of the right half-arch of the left-hole is greater than the left half-arch of the left-hole, and the overall response of the left half-arch of the right-hole is greater than the right half-arch of the right-hole. The measured points in the left half-arch of the left-hole and the right half-arch of the right-hole have small differences in acceleration response; The effects of Kobe wave on horizontal acceleration and vertical acceleration are greater than EI wave, and the average value of the vertical acceleration response of the lining is greater than the average value of the horizontal acceleration response. With the increase of seismic intensity, the larger the acceleration amplification factor is, the greater the increase is; Under the action of different seismic waves, the seismic wave excitation has a greater impact on the dynamic strain response of the left-hole, and less impact on the right-hole. Among them, the strain value of the left-hole shoulder, left-hole invert and the top left of the mid-partition is much larger than the other measurement points, the trend of the right-hole is relatively gentle, and the strain values of the shoulder are slightly larger. The research conclusions have certain guidance and reference value for the seismic design of shallow double-arch tunnels under unsymmetrical pressure

    MADS-Box Genes and Gibberellins Regulate Bolting in Lettuce (Lactuca sativa L.)

    Get PDF
    Bolting in lettuce is promoted by high temperature and bolting resistance is of great economic importance for lettuce production. But how bolting is regulated at the molecular level remains elusive. Here, a bolting resistant line S24 and a bolting sensitive line S39 were selected for morphological, physiological, transcriptomic and proteomic comparisons. A total of 12204 genes were differentially expressed in S39 vs S24. Line S39 was featured with larger leaves, higher levels of chlorophyll, soluble sugar, anthocyanin and auxin, consistent with its up-regulation of genes implicated in photosynthesis, oxidation-reduction and auxin actions. Proteomic analysis identified 30 differentially accumulated proteins in lines S39 and S24 upon heat treatment, and 19 out of the 30 genes showed differential expression in the RNA-Seq data. Exogenous gibberellins (GA) treatment promoted bolting in both S39 and S24, while 12 flowering promoting MADS-box genes were specifically induced in line S39, suggesting that although GA regulates bolting in lettuce, it may be the MADS-box genes, not GA, that plays a major role in differing the bolting resistance between these two lettuce lines

    Adaptive Steganalysis Based on Selection Region and Combined Convolutional Neural Networks

    Get PDF
    Digital image steganalysis is the art of detecting the presence of information hiding in carrier images. When detecting recently developed adaptive image steganography methods, state-of-art steganalysis methods cannot achieve satisfactory detection accuracy, because the adaptive steganography methods can adaptively embed information into regions with rich textures via the guidance of distortion function and thus make the effective steganalysis features hard to be extracted. Inspired by the promising success which convolutional neural network (CNN) has achieved in the fields of digital image analysis, increasing researchers are devoted to designing CNN based steganalysis methods. But as for detecting adaptive steganography methods, the results achieved by CNN based methods are still far from expected. In this paper, we propose a hybrid approach by designing a region selection method and a new CNN framework. In order to make the CNN focus on the regions with complex textures, we design a region selection method by finding a region with the maximal sum of the embedding probabilities. To evolve more diverse and effective steganalysis features, we design a new CNN framework consisting of three separate subnets with independent structure and configuration parameters and then merge and split the three subnets repeatedly. Experimental results indicate that our approach can lead to performance improvement in detecting adaptive steganography

    Ultra-small carbon nanospheres (< 50 nm) of uniform tunable sizes by a convenient catalytic emulsion polymerization strategy: superior supercapacitive and sorption performances

    Get PDF
    Porous carbon nanospheres have received enormous attention for various applications. Though there are several elegant strategies existing for the synthesis of relatively large carbon nanospheres (> ca. 100 nm), the synthesis of carbon nanospheres with well-defined tunable ultra-small sizes (< 50 nm) has often been challenging while such ultra-small nanospheres are much more valuable. A novel, convenient, and scalable catalytic emulsion polymerization technique is demonstrated in this paper for highly efficient synthesis of ultra-small carbon nanospheres with uniform tunable sizes in the range of 11–38 nm. In this strategy, a simple change of the emulsion polymerization recipe renders a convenient yet efficient tuning of the size of the carbon nanospheres. In particular, activated carbon nanospheres (A-CNS21 of average size of 21 nm) obtained by carbonization in the presence of KOH as the chemical activation agent is featured with very high surface area (2,360 m2/g) and the desired hierarchical macro-/meso-/micropore structures resulting from nanosphere packing/aggregation. A-CNS21 is demonstrated to have superior high-rate supercapacitive performances and outstanding sorption capacities towards volatile organic compounds (VOCs), H2, and CO2, which are comparable to or even better than the best results reported to date in these applications. To the best of our knowledge, this is the first synthesis of ultrasmall carbon nanospheres with uniform tunable sizes and superior performances for these applications by the emulsion polymerization strategy
    • …
    corecore