102 research outputs found

    Kaposi’s sarcoma-associated herpesvirus seropositivity is associated with type 2 diabetes mellitus: A case–control study in Xinjiang, China

    Get PDF
    Objective: To assess the potential relationship between Kaposi’s sarcoma-associated herpesvirus (KSHV) infection and type 2 diabetes mellitus (DM-2) in Xinjiang, China. Methods: A case–control study of consecutively included DM-2 patients and normal controls was conducted among the Uygur and Han populations in Xinjiang Uygur Autonomous Region, China. Blood samples were collected and KSHV seroprevalence, antibody titers, and viral load were investigated. Logistic regression analysis and multiple linear regression analysis were applied to explore determinants of the main outcome measures. Results: A total of 324 patients with DM-2 and 376 normal controls were included. The seroprevalence of KSHV was 49.1% (95% confidence interval (CI) 43.6–54.5%) for diabetic patients and 23.7% (95% CI 19.4– 28.0%) for the control group. After adjusting for variables of ethnicity, sex, body mass index, occupation, educational level, marital status, age, and smoking and alcohol consumption habits, the association between DM-2 and KSHV infection still existed (odds ratio (OR) 2.94, 95% CI 2.05–4.22), and the risk of KSHV infection increased with glucose concentration (OR 1.35, 95% CI 1.21–1.51). KSHV was more likely to express both the latent and lytic antigens in diabetic patients (latent: OR 3.27, 95% CI 2.25–4.75; lytic: OR 3.99, 95% CI 2.68–5.93). Antibody titers and viral load increased in patients with higher blood glucose levels (p \u3c 0.001). Conclusions: Patients with DM-2 have an elevated risk of KSHV infection. Both antibody titers and viral load increased with blood glucose levels

    Oral administration of interferon-α2b-transformed Bifidobacterium longum protects BALB/c mice against coxsackievirus B3-induced myocarditis

    Get PDF
    Multiple reports have claimed that low-dose orally administered interferon (IFN)-α is beneficial in the treatment of many infectious diseases and provides a viable alternative to high-dose intramuscular treatment. However, research is needed on how to express IFN stably in the gut. Bifidobacterium may be a suitable carrier for human gene expression and secretion in the intestinal tract for the treatment of gastrointestinal diseases. We reported previously that Bifidobacterium longum can be used as a novel oral delivery of IFN-α. IFN-transformed B. longum can exert an immunostimulatory role in mice; however the answer to whether this recombinant B. longum can be used to treat virus infection still remains elusive. Here, we investigated the efficacy of IFN-transformed B. longum administered orally on coxsackie virus B3 (CVB3)-induced myocarditis in BALB/c mice. Our data indicated that oral administration of IFN-transformed B. longum for 2 weeks after virus infection reduced significantly the severity of virus-induced myocarditis, markedly down regulated virus titers in the heart, and induced a T helper 1 cell pattern in the spleen and heart compared with controls. Oral administration of the IFN-transformed B. longum, therefore, may play a potential role in the treatment of CVB3-induced myocarditis

    Expression Quantitative Trait Loci and Receptor Pharmacology Implicate Arg1 and the GABA-A Receptor as Therapeutic Targets in Neuroblastoma

    Get PDF
    SummaryThe development of targeted therapeutics for neuroblastoma, the third most common tumor in children, has been limited by a poor understanding of growth signaling mechanisms unique to the peripheral nerve precursors from which tumors arise. In this study, we combined genetics with gene-expression analysis in the peripheral sympathetic nervous system to implicate arginase 1 and GABA signaling in tumor formation in vivo. In human neuroblastoma cells, either blockade of ARG1 or benzodiazepine-mediated activation of GABA-A receptors induced apoptosis and inhibited mitogenic signaling through AKT and MAPK. These results suggest that ARG1 and GABA influence both neural development and neuroblastoma and that benzodiazepines in clinical use may have potential applications for neuroblastoma therapy

    Roadmap on spatiotemporal light fields

    Full text link
    Spatiotemporal sculpturing of light pulse with ultimately sophisticated structures represents the holy grail of the human everlasting pursue of ultrafast information transmission and processing as well as ultra-intense energy concentration and extraction. It also holds the key to unlock new extraordinary fundamental physical effects. Traditionally, spatiotemporal light pulses are always treated as spatiotemporally separable wave packet as solution of the Maxwell's equations. In the past decade, however, more generalized forms of spatiotemporally nonseparable solution started to emerge with growing importance for their striking physical effects. This roadmap intends to highlight the recent advances in the creation and control of increasingly complex spatiotemporally sculptured pulses, from spatiotemporally separable to complex nonseparable states, with diverse geometric and topological structures, presenting a bird's eye viewpoint on the zoology of spatiotemporal light fields and the outlook of future trends and open challenges.Comment: This is the version of the article before peer review or editing, as submitted by an author to Journal of Optics. IOP Publishing Ltd is not responsible for any errors or omissions in this version of the manuscript or any version derived from i

    Betacellulin drives therapy resistance in glioblastoma.

    No full text

    Gut–Liver Axis as a Therapeutic Target for Drug-Induced Liver Injury

    No full text
    Drug-induced liver injury (DILI) is a liver disease that remains difficult to predict and diagnose, and the underlying mechanisms are yet to be fully clarified. The gut–liver axis refers to the reciprocal interactions between the gut and the liver, and its homeostasis plays a prominent role in maintaining liver health. It has been recently reported that patients and animals with DILI have a disrupted gut–liver axis, involving altered gut microbiota composition, increased intestinal permeability and lipopolysaccharide translocation, decreased short-chain fatty acids production, and impaired bile acid metabolism homeostasis. The present review will summarize the evidence from both clinical and preclinical studies about the role of the gut–liver axis in the pathogenesis of DILI. Moreover, we will focus attention on the potential therapeutic strategies for DILI based on improving gut–liver axis function, including herbs and phytochemicals, probiotics, fecal microbial transplantation, postbiotics, bile acids, and Farnesoid X receptor agonists

    Changes in color and iron ions of commercial iron gall inks after artificial aging

    No full text
    Abstract Iron gall inks consist of vitriols (sulphates of certain metals), gall nut extracts; and gum Arabic: after exposure to oxygen, dark-colored compounds of the inks are formed. As the complexity of the composition of iron gall inks renders documents susceptible to environmental influences, this causes the handwriting thereon to fade. These add technical difficulties to the protection of iron gall inks. Therefore, it is particularly important to understand the changes in the inks during the aging process. For this reason, iron gall ink-stained paper specimens were subject to an intense analytical program to investigate their chemical and physical modifications after aging (temperature/humidity, temperature, and ultraviolet light aging), commercial iron gall ink was used for this experiment, making the study more applicable. The changes of iron gall inks were evaluated using color variation, color density, absorbance, and X-ray photoelectron spectroscopy (XPS). All results indicate that the temperature, humidity, and UV are harmful to the inks in both physical and chemical terms. Physical damage is mainly the aging of the ink color lightening, color density decreases, of which the color of the samples treated with damp heat for 30 days undergoes the greatest change. The chemical change is represented by the ratio of the concentration of iron ions in different valence states, the amount of Fe3+ in the untreated inks is much greater than that of Fe2+, and the amount of Fe2+ exceeds that of Fe3+ after exposure to different methods of aging. Experiments show that UV light causes the most severe damage to handwriting. The main manifestation thereof is color-fade and the paper surface ink part of the iron ion content changes, with the increase of aging time, the Fe2+ content gradually increases. This experimental study of the changes produced by iron gall inks during aging can provide better technical support for the protection of the ink handwriting

    Thermal Regulation of Coastal Urban Forest Based on ENVI-Met Model—A Case Study in Qinhuangdao, China

    No full text
    Urban forests can improve human comfort by improving the near-surface microclimate. Exploring the microclimate characteristics of urban forests and their impact on human comfort is particularly important to improve the urban thermal environment through scientific urban forest design. Since most previous studies were conducted under typical inland urban climates and little is known about the thermal regulation services of coastal urban forests, this study field measured the thermal surface radiation temperature of 16 open spaces in the urban forest site in Qinhuangdao. Then the ENVI-met software was used to simulate and analyze the microclimate characteristics before and after the park’s building-up, and compare the differences in the human comfort index in different scenarios. Results indicated that: (1) Vegetation have a significant cooling effect on surrounding environment. The farther away from vegetation area, the higher the average surface temperature. (2) Water bodies have the best cooling and humidifying effect on the 9–18 m surrounding environment with the best human comfort index. (3) In summer, air temperature in park decreased by 0.4~1.4 °C, and the relative humidity increased by 0.07~2.81%. (4) After the park’s built-up, the average human comfort index was optimized by 0.02~1.87. Arranging the leisure open space around the water bodies and forest edge space of the deciduous broad-leaved forest could improve human comfort. This research is expected to provide a scientific basis and planning inspiration for the construction of coastal urban forests in the same latitude area

    Thermal Regulation of Coastal Urban Forest Based on ENVI-Met Model—A Case Study in Qinhuangdao, China

    No full text
    Urban forests can improve human comfort by improving the near-surface microclimate. Exploring the microclimate characteristics of urban forests and their impact on human comfort is particularly important to improve the urban thermal environment through scientific urban forest design. Since most previous studies were conducted under typical inland urban climates and little is known about the thermal regulation services of coastal urban forests, this study field measured the thermal surface radiation temperature of 16 open spaces in the urban forest site in Qinhuangdao. Then the ENVI-met software was used to simulate and analyze the microclimate characteristics before and after the park’s building-up, and compare the differences in the human comfort index in different scenarios. Results indicated that: (1) Vegetation have a significant cooling effect on surrounding environment. The farther away from vegetation area, the higher the average surface temperature. (2) Water bodies have the best cooling and humidifying effect on the 9–18 m surrounding environment with the best human comfort index. (3) In summer, air temperature in park decreased by 0.4~1.4 °C, and the relative humidity increased by 0.07~2.81%. (4) After the park’s built-up, the average human comfort index was optimized by 0.02~1.87. Arranging the leisure open space around the water bodies and forest edge space of the deciduous broad-leaved forest could improve human comfort. This research is expected to provide a scientific basis and planning inspiration for the construction of coastal urban forests in the same latitude area

    Hyperspectral Unmixing with Gaussian Mixture Model and Low-Rank Representation

    No full text
    Gaussian mixture model (GMM) has been one of the most representative models for hyperspectral unmixing while considering endmember variability. However, the GMM unmixing models only have proper smoothness and sparsity prior constraints on the abundances and thus do not take into account the possible local spatial correlation. When the pixels that lie on the boundaries of different materials or the inhomogeneous region, the abundances of the neighboring pixels do not have those prior constraints. Thus, we propose a novel GMM unmixing method based on superpixel segmentation (SS) and low-rank representation (LRR), which is called GMM-SS-LRR. we adopt the SS in the first principal component of HSI to get the homogeneous regions. Moreover, the HSI to be unmixed is partitioned into regions where the statistical property of the abundance coefficients have the underlying low-rank property. Then, to further exploit the spatial data structure, under the Bayesian framework, we use GMM to formulate the unmixing problem, and put the low-rank property into the objective function as a prior knowledge, using generalized expectation maximization to solve the objection function. Experiments on synthetic datasets and real HSIs demonstrated that the proposed GMM-SS-LRR is efficient compared with other current popular methods
    • …
    corecore