58 research outputs found

    Efficient XAI Techniques: A Taxonomic Survey

    Full text link
    Recently, there has been a growing demand for the deployment of Explainable Artificial Intelligence (XAI) algorithms in real-world applications. However, traditional XAI methods typically suffer from a high computational complexity problem, which discourages the deployment of real-time systems to meet the time-demanding requirements of real-world scenarios. Although many approaches have been proposed to improve the efficiency of XAI methods, a comprehensive understanding of the achievements and challenges is still needed. To this end, in this paper we provide a review of efficient XAI. Specifically, we categorize existing techniques of XAI acceleration into efficient non-amortized and efficient amortized methods. The efficient non-amortized methods focus on data-centric or model-centric acceleration upon each individual instance. In contrast, amortized methods focus on learning a unified distribution of model explanations, following the predictive, generative, or reinforcement frameworks, to rapidly derive multiple model explanations. We also analyze the limitations of an efficient XAI pipeline from the perspectives of the training phase, the deployment phase, and the use scenarios. Finally, we summarize the challenges of deploying XAI acceleration methods to real-world scenarios, overcoming the trade-off between faithfulness and efficiency, and the selection of different acceleration methods.Comment: 15 pages, 3 figure

    Machine Learning Explanations to Prevent Overtrust in Fake News Detection

    Full text link
    Combating fake news and misinformation propagation is a challenging task in the post-truth era. News feed and search algorithms could potentially lead to unintentional large-scale propagation of false and fabricated information with users being exposed to algorithmically selected false content. Our research investigates the effects of an Explainable AI assistant embedded in news review platforms for combating the propagation of fake news. We design a news reviewing and sharing interface, create a dataset of news stories, and train four interpretable fake news detection algorithms to study the effects of algorithmic transparency on end-users. We present evaluation results and analysis from multiple controlled crowdsourced studies. For a deeper understanding of Explainable AI systems, we discuss interactions between user engagement, mental model, trust, and performance measures in the process of explaining. The study results indicate that explanations helped participants to build appropriate mental models of the intelligent assistants in different conditions and adjust their trust accordingly for model limitations

    Explainability for Large Language Models: A Survey

    Full text link
    Large language models (LLMs) have demonstrated impressive capabilities in natural language processing. However, their internal mechanisms are still unclear and this lack of transparency poses unwanted risks for downstream applications. Therefore, understanding and explaining these models is crucial for elucidating their behaviors, limitations, and social impacts. In this paper, we introduce a taxonomy of explainability techniques and provide a structured overview of methods for explaining Transformer-based language models. We categorize techniques based on the training paradigms of LLMs: traditional fine-tuning-based paradigm and prompting-based paradigm. For each paradigm, we summarize the goals and dominant approaches for generating local explanations of individual predictions and global explanations of overall model knowledge. We also discuss metrics for evaluating generated explanations, and discuss how explanations can be leveraged to debug models and improve performance. Lastly, we examine key challenges and emerging opportunities for explanation techniques in the era of LLMs in comparison to conventional machine learning models
    • …
    corecore