268 research outputs found

    A Sample of Quasars with Strong Nitrogen Emission Lines from the Sloan Digital Sky Survey

    Get PDF
    We report on 293 quasars with strong NIV] lambda 1486 or NIII] lambda 1750 emission lines (rest-frame equivalent width > 3 \AA) at 1.7 < z < 4.0 selected from the Sloan Digital Sky Survey (SDSS) Fifth Data Release. These nitrogen-rich (N-rich) objects comprise ~1.1% of the SDSS quasars. The comparison between the N-rich quasars and other quasars shows that the two quasar subsets share many common properties. We also confirm previous results that N-rich quasars have much stronger Lya and NV lambda 1240 emission lines. Strong nitrogen emission in all ionization states indicates high overall nitrogen abundances in these objects. We find evidence that the nitrogen abundance is closely related to quasar radio properties. The radio-loud fraction in the NIII]-rich quasars is 26% and in the NIV]-rich quasars is 69%, significantly higher than ~8% measured in other quasars with similar redshift and luminosity. Therefore, the high nitrogen abundance in N-rich quasars could be an indicator of a special quasar evolution stage, in which the radio activity is also strong.Comment: 8 pages, 4 figures; accepted by ApJ (ApJ June 10, 2008, v680 n1 issue

    Discovery of Eight z ~ 6 Quasars in the Sloan Digital Sky Survey Overlap Regions

    Full text link
    We present the discovery of eight quasars at z~6 identified in the Sloan Digital Sky Survey (SDSS) overlap regions. Individual SDSS imaging runs have some overlap with each other, leading to repeat observations over an area spanning >4000 deg^2 (more than 1/4 of the total footprint). These overlap regions provide a unique dataset that allows us to select high-redshift quasars more than 0.5 mag fainter in the z band than those found with the SDSS single-epoch data. Our quasar candidates were first selected as i-band dropout objects in the SDSS imaging database. We then carried out a series of follow-up observations in the optical and near-IR to improve photometry, remove contaminants, and identify quasars. The eight quasars reported here were discovered in a pilot study utilizing the overlap regions at high galactic latitude (|b|>30 deg). These quasars span a redshift range of 5.86<z<6.06 and a flux range of 19.3<z_AB<20.6 mag. Five of them are fainter than z_AB=20 mag, the typical magnitude limit of z~6 quasars used for the SDSS single-epoch images. In addition, we recover eight previously known quasars at z~6 that are located in the overlap regions. These results validate our procedure for selecting quasar candidates from the overlap regions and confirming them with follow-up observations, and provide guidance to a future systematic survey over all SDSS imaging regions with repeat observations.Comment: AJ in press (8 pages

    Application of Moringa oleifera seeds and Musa cavendish as coagulants for lead, nickel and cadmium removal from drinking water

    Get PDF
    Contamination of drinking water sources by heavy metals in many South Asian countries has become a major public health concern. As conventional chemical treatment of the contaminated water may not be feasible for many remote communities in the region due to technical and financial constraints, some low-cost, native and abundantly available natural materials have emerged as a potential alternative to the expensive water treatment chemicals. Plant-based materials 'Moringa oleifera' (MO) and 'Musa cavendish' (MC) were investigated in this study as the coagulants for removing lead (Pb), nickel (Ni) and cadmium (Cd) from groundwater containing metal ions at their typical concentrations found in selected South Asian countries. Coagulation tests were conducted with the individual coagulants and their combinations on synthetic and real groundwater samples. The best removal efficiencies for Ni (77%) and Cd (67%) were achieved by the combined coagulants dosed in a mixing manner at the optimum coagulant dosages of 200+200 mg/L from the initial concentration of 31 mug/L and 5 mug/L, respectively. This was attributed to the presence of additional binding sites with different active functional groups, leading to higher removal efficiency compared to the individual coagulant. However, MO alone showed the best removal for Pb (87%) at the coagulant dose of 300 mg/L from the initial concentration of 19 mg/L; suggesting that MO had a good affinity towards Pb. The study demonstrated that MO and MC have the potential to remove Pb, Ni and Cd from drinking water to meet the World Health Organisation (WHO) drinking water standards

    The impact of wastewater characteristics, algal species selection and immobilisation on simultaneous nitrogen and phosphorus removal

    Get PDF
    Nutrient removal from wastewater reduces the environmental impact of its discharge and provides opportunity for water reclamation. Algae can accomplish simultaneous nitrogen and phosphorus removal while also adding value to the wastewater treatment process through resource recovery. The application of algae to wastewater treatment has been limited by a low rate of nutrient removal and difficulty in recovering the algal biomass. Immobilising the algal cells can aid in overcoming both these issues and so improve the feasibility of algal wastewater treatment. Trends for nutrient removal by algal systems over different wastewater characteristics and physical conditions are reviewed. The impact that the selection of algal species and immobilisation has on simultaneous nutrient removal as well as the interdependence of nitrogen and phosphorus are established. Understanding these behaviours will allow the performance of algal wastewater treatment systems to be predicted, assist in their optimisation, and help to identify directions for future research

    The Extremely Luminous Quasar Survey (ELQS) in the SDSS footprint I.: Infrared Based Candidate Selection

    Full text link
    Studies of the most luminous quasars at high redshift directly probe the evolution of the most massive black holes in the early Universe and their connection to massive galaxy formation. However, extremely luminous quasars at high redshift are very rare objects. Only wide area surveys have a chance to constrain their population. The Sloan Digital Sky Survey (SDSS) has so far provided the most widely adopted measurements of the quasar luminosity function (QLF) at z>3z>3. However, a careful re-examination of the SDSS quasar sample revealed that the SDSS quasar selection is in fact missing a significant fraction of z3z\gtrsim3 quasars at the brightest end. We have identified the purely optical color selection of SDSS, where quasars at these redshifts are strongly contaminated by late-type dwarfs, and the spectroscopic incompleteness of the SDSS footprint as the main reasons. Therefore we have designed the Extremely Luminous Quasar Survey (ELQS), based on a novel near-infrared JKW2 color cut using WISE AllWISE and 2MASS all-sky photometry, to yield high completeness for very bright (mi<18.0m_{\rm{i}} < 18.0) quasars in the redshift range of 3.0z5.03.0\leq z\leq5.0. It effectively uses random forest machine-learning algorithms on SDSS and WISE photometry for quasar-star classification and photometric redshift estimation. The ELQS will spectroscopically follow-up 230\sim 230 new quasar candidates in an area of 12000deg2\sim12000\,\rm{deg}^2 in the SDSS footprint, to obtain a well-defined and complete quasars sample for an accurate measurement of the bright-end quasar luminosity function at 3.0z5.03.0\leq z\leq5.0. In this paper we present the quasar selection algorithm and the quasar candidate catalog.Comment: 16 pages, 8 figures, 9 tables; ApJ in pres

    Gemini Near-infrared Spectroscopy of Luminous z~6 Quasars: Chemical Abundances, Black Hole Masses, and MgII Absorption

    Get PDF
    We present Gemini near-infrared spectroscopic observations of six luminous quasars at z=5.8\sim6.3. Five of them were observed using Gemini-South/GNIRS, which provides a simultaneous wavelength coverage of 0.9--2.5 μ\mum in cross dispersion mode. The other source was observed in K band with Gemini-North/NIRI. We calculate line strengths for all detected emission lines and use their ratios to estimate gas metallicity in the broad-line regions of the quasars. The metallicity is found to be supersolar with a typical value of \sim4 Z_{\sun}, and a comparison with low-redshift observations shows no strong evolution in metallicity up to z\sim6. The FeII/MgII ratio of the quasars is 4.9+/-1.4, consistent with low-redshift measurements. We estimate central BH masses of 10^9 to 10^{10} M_{\sun} and Eddington luminosity ratios of order unity. We identify two MgII λλ\lambda\lambda2796,2803 absorbers with rest equivalent width W_0^{\lambda2796}>1 \AA at 2.2<z<3 and three MgII absorbers with W_0^{\lambda2796}>1.5 \AA at z>3 in the spectra, with the two most distant absorbers at z=4.8668 and 4.8823, respectively. The redshift number densities (dN/dz) of MgII absorbers with W_0^{\lambda2796}>1.5 \AA are consistent with no cosmic evolution up to z>4.Comment: 33 pages (including 7 figures and 6 tables), AJ in pres

    Energy-balanced multi-hop-aware cooperative geographic routing for wireless ad hoc networks

    Get PDF
    Since the cooperative communication can reduce the transmitted power and extend the transmission coverage, minimum energy routing protocols are considered to reduce the total energy consumption in a multi-hop wireless Ad Hoc network. In this paper, an Energy-balanced Multi-hop-aware Cooperative Geographic Routing (EMCGR) algorithm is proposed. We firstly formulate the outage probability and construct the minimum power route in Multi-hop-aware Cooperative Transmission (MCT) mode. The MCT mode can fully exploit the merit of the relay broadcasting characteristics to achieve the aim of saving the total transmitted power. Then an improved Energy-Balanced Geographic Routing (EBGR) algorithm is designed. The EBGR algorithm selects the next hop forwarding node by combining the geographic position information and energy information. The goal of this strategy is to balance the energy consumption among nodes so that the lifetime of the whole network can be prolonged. The route of the proposed EMCGR algorithm is based on EBGR algorithm. Simulation results show that in the same computer simulation scene, the power saving of the EMCGR algorithm with respect to the MPCR algorithm and EBGR algorithm can achieve 15.2% and 67.1%, respectively. Besides, the EMCGR algorithm does well in balancing the energy consumption among nodes in the wireless Ad Hoc network
    corecore