2,596 research outputs found

    Dynamic Potential-Ph Diagrams Application to Electrocatalysts for Water Oxidation

    Get PDF
    The construction and use of "dynamic potential-pH diagrams" (DPPDs), that are intended to extend the usefulness of thermodynamic Pourbaix diagrams to include kinetic considerations is described. As an example, DPPDs are presented for the comparison of electrocatalysts for water oxidation, i.e., the oxygen evolution reaction (OER), an important electrochemical reaction because of its key role in energy conversion devices and biological systems (water electrolyses, photoelectrochemical water splitting, plant photosynthesis). The criteria for obtaining kinetic data are discussed and a 3-D diagram, which shows the heterogeneous electron transfer kinetics of an electrochemical system as a function of pH and applied potential is presented. DPPDs are given for four catalysts: IrO(2), Co(3)O(4), Co(3)O(4) electrodeposited in a phosphate medium (Co-Pi) and Pt, allowing a direct comparison of the activity of different electrode materials over a broad range of experimental conditions (pH, potential, current density). In addition, the experimental setup and the factors affecting the accurate collection and presentation of data (e. g., reference electrode system, correction of ohmic drops, bubble formation) are discussed.Ministry of Education, University and Research PRIN 2008PF9TWZ, 2008N7CYL5Universita degli Studi di MilanoNational Science Foundation CHE-0808927Robert A. Welch Foundation F-0021Center for Electrochemistr

    Nano-Size Layered Manganese-Calcium Oxide as an Efficient and Biomimetic Catalyst for Water Oxidation Under Acidic Conditions: Comparable To Platinum

    Get PDF
    Inspired by Nature's catalyst, a nano-size layered manganese-calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum.Institute for Advanced Studies in Basic Sciences and the National Elite FoundationUS Department of Energy, Office of Basic Energy Sciences, Division of Chemical, Geochemical and Biological Sciences DE-FG02-86ER13622, DE-FG0209ER16119Russian Foundation for Basic Research 11-04-01389a, 12-0492101a, 13-04-92711aMolecular and Cell Biology Programs of the Russian Academy of SciencesCenter for Electrochemistr

    Nano-size layered manganese–calcium oxide as an efficient and biomimetic catalyst for water oxidation under acidic conditions: comparable to platinum

    Get PDF
    This is the published version. ©Copyright Royal Society of Chemistry 2015Inspired by Nature's catalyst, a nano-size layered manganese–calcium oxide showed a low overvoltage for water oxidation in acidic solutions, which is comparable to platinum

    Preparation of porous thin-film polymethylsiloxane microparticles in a W/O emulsion system

    Get PDF
    Porous thin-film polymethylsiloxane microparticles have been prepared successfully from octyltrichlorosilane and methyltrichlorosilane in (water/oil) W/O emulsion systems by using several oil phases and changing the amount of the silanes or of the surfactant Span 60. Hollow microspheres of various shell thicknesses (120-180 nm) and high surface area were prepared by using four types of nonpolar solvents as the oil phase of the W/O emulsion system. The diameter of the spheres can also be controlled (1-1.6 mu m) by using different oil phases. The results of thermal analysis, nitrogen adsorption isotherm, infrared spectra and X-ray diffraction data showed that hollow microspheres of amorphous polymethylsiloxane with high surface area (360-385 m(2)g(-1)) can be obtained by heating the spheres in air at 673 K; the polymethylsiloxane microspheres become nonporous silica particles after calcination at 873 K for 3 h. Cup-shape microparticles of polymethylsiloxane with nano-order thickness (20-120 nm) were prepared by reducing the amount of silanes in the mixture. Small hollow particles were prepared by replacing a portion of the octyltrichlorosilane with Span 60.ArticlePOLYMER JOURNAL. 47(6): 449-455 (2015)journal articl

    Search for C-parity violation in J/ψγγJ/ \psi \to \gamma\gamma and γϕ \gamma \phi

    Full text link
    Using 1.06×1081.06\times10^8 ψ(3686)\psi(3686) events recorded in e+ee^{+}e^{-} collisions at s=\sqrt{s}= 3.686 GeV with the BESIII at the BEPCII collider, we present searches for C-parity violation in J/ψγγJ/\psi \to \gamma\gamma and γϕ \gamma \phi decays via ψ(3686)J/ψπ+π\psi(3686) \to J/\psi \pi^+\pi^-. No significant signals are observed in either channel. Upper limits on the branching fractions are set to be B(J/ψγγ)<2.7×107\mathcal{B}(J/\psi \to \gamma\gamma) < 2.7 \times 10^{-7} and B(J/ψγϕ)<1.4×106\mathcal{B}(J/\psi \to \gamma\phi) < 1.4 \times 10^{-6} at the 90\% confidence level. The former is one order of magnitude more stringent than the previous upper limit, and the latter represents the first limit on this decay channel.Comment: 7 pages, 2 figure

    Measurement of the proton form factor by studying e+eppˉe^{+} e^{-}\rightarrow p\bar{p}

    Full text link
    Using data samples collected with the BESIII detector at the BEPCII collider, we measure the Born cross section of e+eppˉe^{+}e^{-}\rightarrow p\bar{p} at 12 center-of-mass energies from 2232.4 to 3671.0 MeV. The corresponding effective electromagnetic form factor of the proton is deduced under the assumption that the electric and magnetic form factors are equal (GE=GM)(|G_{E}|= |G_{M}|). In addition, the ratio of electric to magnetic form factors, GE/GM|G_{E}/G_{M}|, and GM|G_{M}| are extracted by fitting the polar angle distribution of the proton for the data samples with larger statistics, namely at s=\sqrt{s}= 2232.4 and 2400.0 MeV and a combined sample at s\sqrt{s} = 3050.0, 3060.0 and 3080.0 MeV, respectively. The measured cross sections are in agreement with recent results from BaBar, improving the overall uncertainty by about 30\%. The GE/GM|G_{E}/G_{M}| ratios are close to unity and consistent with BaBar results in the same q2q^{2} region, which indicates the data are consistent with the assumption that GE=GM|G_{E}|=|G_{M}| within uncertainties.Comment: 13 pages, 24 figure

    Observation of the ψ(13D2)\psi(1^3D_2) state in e+eπ+πγχc1e^+e^-\to\pi^+\pi^-\gamma\chi_{c1} at BESIII

    Full text link
    We report the observation of the X(3823)X(3823) in the process e+eπ+πX(3823)π+πγχc1e^+e^-\to \pi^+\pi^-X(3823) \to \pi^+\pi^-\gamma\chi_{c1} with a statistical significance of 6.2σ6.2\sigma, in data samples at center-of-mass energies s=\sqrt{s}=4.230, 4.260, 4.360, 4.420 and 4.600~GeV collected with the BESIII detector at the BEPCII electron positron collider. The measured mass of the X(3823)X(3823) is (3821.7±1.3±0.7)(3821.7\pm 1.3\pm 0.7)~MeV/c2c^2, where the first error is statistical and the second systematic, and the width is less than 1616~MeV at the 90\% confidence level. The products of the Born cross sections for e+eπ+πX(3823)e^+e^-\to \pi^+\pi^-X(3823) and the branching ratio B[X(3823)γχc1,c2]\mathcal{B}[X(3823)\to \gamma\chi_{c1,c2}] are also measured. These measurements are in good agreement with the assignment of the X(3823)X(3823) as the ψ(13D2)\psi(1^3D_2) charmonium state.Comment: 7 pages, 3 figures, version to appear in Phys. Rev. Let
    corecore