319 research outputs found

    Determining coupling dynamic stiffness of structural connection by tested FRFs

    Get PDF
    Identifying coupling dynamic stiffness of structural connection is often needed in substructural dynamic analysis. To overcome the faultiness of conventional approaches existed, five indirect schemes of inverse substructuring analysis by using tested frequency response functions (FRFs) are provided. And the first indirect scheme is verified by three mass-rubber models constructed as two-level substructures with mono-coupling, bi-coupling and tri-coupling connection. Compared to existing direct scheme of inverse substructuring analysis, it shows better performance with acceptable precision of determining the stiffness

    An ionic organic–inorganic hybrid: tetra­kis[bis­(1,10-phenanthroline)copper(I)] dodeca­tungstophosphate(V)

    Get PDF
    Single crystals of the title polyoxometallate-based organic–inorganic hybrid, [Cu(C12H8N2)2]4[SiW12O40], were grown under hydro­thermal conditions. The discrete [SiW12O40]4− anions are of the Keggin type and are packed in a slightly distorted ortho­rhom­bic F-centred mode, with the complex [CuI(phen)2]+ cations (phen is 1,10-phenanthroline) located in the voids of this arrangement. The four independent CuI cations are situated in the centres of more or less distorted tetra­hedra made up of N atoms from the phen ligands. The anions and cations are linked together via weak hydrogen-bonding inter­actions, forming an extended three-dimensional network. Additional stabilization is achieved via π–π inter­actions between different phen mol­ecules of adjacent [CuI(phen)2]+ cations with shortest distances between 3.416 and 3.499 Å

    Outdoor Air Pollution and Arterial Hypertension

    Get PDF
    Air pollution is a major environmental risk factor. There is accumulating evidence that air pollution could induce elevated blood pressure and potentiate hypertension. Acute elevations in the outdoor air pollution levels can trigger immediate or shortly delayed increases in arterial blood pressure. Moreover, few studies suggest that short-term increases in the levels of particulate and gaseous pollutants could lead to an acute onset of hypertension. Prolonged exposure to outdoor air pollution is associated with elevated blood pressure. Furthermore, some longitudinal studies have linked long-term exposure to air pollution with the incidence of hypertension. Various components of air pollution, such as inhalable particulate matter (PM2.5, PM10), nitrogen oxides, sulfur dioxide, and ozone, have shown associations with blood pressure in some studies. The hypothesized underlying mechanisms include inflammatory reactions and oxidative stress in lungs and in systemic circulation, imbalance of autonomous nervous system, and pathologic changes in vascular endothelium. In addition to “traditional” susceptible groups such as elderly individuals or patients with chronic diseases, children and pregnant women could be especially susceptible to the adverse effects of air pollution. The interplay of air pollution with the related environmental exposures, such as traffic noise and climate change, should be investigated further

    MicroRNA-21 inhibitor sensitizes human glioblastoma cells U251 (PTEN-mutant) and LN229 (PTEN-wild type) to taxol

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>Substantial data indicate that the oncogene microRNA 21 (miR-21) is significantly elevated in glioblastoma multiforme (GBM) and regulates multiple genes associated with cancer cell proliferation, apoptosis, and invasiveness. Thus, miR-21 can theoretically become a target to enhance the chemotherapeutic effect in cancer therapy. So far, the effect of downregulating miR-21 to enhance the chemotherapeutic effect to taxol has not been studied in human GBM.</p> <p>Methods</p> <p>Human glioblastoma U251 (PTEN-mutant) and LN229 (PTEN wild-type) cells were treated with taxol and the miR-21 inhibitor (in a poly (amidoamine) (PAMAM) dendrimer), alone or in combination. The 50% inhibitory concentration and cell viability were determined by the MTT assay. The mechanism between the miR-21 inhibitor and the anticancer drug taxol was analyzed using the Zheng-Jun Jin method. Annexin V/PI staining was performed, and apoptosis and the cell cycle were evaluated by flow cytometry analysis. Expression of miR-21 was investigated by RT-PCR, and western blotting was performed to evaluate malignancy related protein alteration.</p> <p>Results</p> <p>IC(50) values were dramatically decreased in cells treated with miR-21 inhibitor combine with taxol, to a greater extent than those treated with taxol alone. Furthermore, the miR-21 inhibitor significantly enhanced apoptosis in both U251 cells and LN229 cells, and cell invasiveness was obviously weakened. Interestingly, the above data suggested that in both the PTEN mutant and the wild-type GBM cells, miR-21 blockage increased the chemosensitivity to taxol. It is worth noting that the miR-21 inhibitor additively interacted with taxol on U251cells and synergistically on LN229 cells. Thus, the miR-21 inhibitor might interrupt the activity of EGFR pathways, independently of PTEN status. Meanwhile, the expression of STAT3 and p-STAT3 decreased to relatively low levels after miR-21 inhibitor and taxol treatment. The data strongly suggested that a regulatory loop between miR-21 and STAT3 might provide an insight into the mechanism of modulating EGFR/STAT3 signaling.</p> <p>Conclusions</p> <p>Taken together, the miR-21 inhibitor could enhance the chemo-sensitivity of human glioblastoma cells to taxol. A combination of miR-21 inhibitor and taxol could be an effective therapeutic strategy for controlling the growth of GBM by inhibiting STAT3 expression and phosphorylation.</p

    High-quality multi-wavelength quantum light sources on silicon nitride micro-ring chip

    Full text link
    Multi-wavelength quantum light sources, especially at telecom band, are extremely desired in quantum information technology. Despite recent impressive advances, such a quantum light source with high quality remains challenging. Here we demonstrate a multi-wavelength quantum light source using a silicon nitride micro-ring with a free spectral range of 200 GHz. The generation of eight pairs of correlated photons is ensured in a wavelength range of 25.6 nm. With device optimization and noise-rejecting filters, our source enables the generation of heralded single-photons - at a rate of 62 kHz with gh(2)(0)=0.014±0.001g^{(2)}_{h}(0)=0.014\pm0.001, and the generation of energy-time entangled photons - with a visibility of 99.39±0.45%99.39\pm 0.45\% in the Franson interferometer. These results, at room temperature and telecom wavelength, in a CMOS compatible platform, represent an important step towards integrated quantum light devices for the quantum networks.Comment: 7 pages, 4 figure

    Energy-time Entanglement Coexisting with Fiber Optical Communication at Telecom C-band

    Full text link
    The coexistence of quantum and classical light in the same fiber link is extremely desired in developing quantum communication. It has been implemented for different quantum information tasks, such as classical light coexisting with polarization-entangled photons at telecom O-band, and with quantum signal based quantum key distribution (QKD). In this work, we demonstrate the coexistence of energy-time entanglement based QKD and fiber optical communication at the telecom C-band. The property of noise from the classical channel is characterized with classical light at different wavelengths. With the largest noise, i.e., the worst case, the properties of energy-time entanglement are measured at different fiber optical communication rates. By measuring the two-photon interference of energy-time entanglement, our results show that a visibility of 82.01±\pm1.10\% is achieved with a bidirectional 20 Gbps fiber optical communication over 40 km. Furthermore, by performing the BBM92 protocol for QKD, a secret key rate of 245 bits per second could be generated with a quantum bit error rate of 8.88\% with the coexisted energy-time entanglement.~Our demonstration paves the way for developing the infrastructure for quantum networks compatible with fiber optical communication.Comment: 6 pages, 3 figures

    Lysimachia danxiashanensis, a new species of Primulaceae from Guangdong, China

    Get PDF
    Lysimachia danxiashanensis, a new Primulaceae species, endemic to the Danxia landscape in Guangdong Province, China, is described and illustrated. This new species is morphologically similar to L. pseudohenryi, L. phyllocephala, L. congestiflora and L. kwangtungensis, but it differs from the similar species by its purplish-red plants, petiole without wings, calyx with orange glandular and the corolla margin serrated on upper half with orange-red glandular punctates. This new species belongs to Lysimachia subgen. Lysimachia sect. Nummularia. Phylogenetic analysis confirmed that L. danxiashanensis is a distinct clade, based on the combined data of ITS and rbcL sequences. The conservation status of the new species was evaluated as Endangered (EN) according to IUCN Red List Categories and Criteria
    corecore