1,641 research outputs found
Efficient channeling of fluorescence photons from single quantum dots into guided modes of optical nanofiber
We experimentally demonstrate the efficient channeling of fluorescence
photons from single q-dots on optical nanofiber into the guided modes, by
measuring the photon-count rates through the guided and radiation modes
simultaneously. We obtain the maximum channeling efficiency to be 22.0
(\pm4.8)% at fiber diameter of 350 nm for the emission wavelength of 780 nm.
The results may open new possibilities in quantum information technologies for
generating single photons into single-mode optical-fibers.Comment: 5 pages, 4 figure
Atom trapping and guiding with a subwavelength-diameter optical fiber
We suggest using an evanescent wave around a thin fiber to trap atoms. We
show that the gradient force of a red-detuned evanescent-wave field in the
fundamental mode of a silica fiber can balance the centrifugal force when the
fiber diameter is about two times smaller than the wavelength of the light and
the component of the angular momentum of the atoms along the fiber axis is in
an appropriate range. As an example, the system should be realizable for Cesium
atoms at a temperature of less than 0.29 mK using a silica fiber with a radius
of 0.2 m and a 1.3-m-wavelength light with a power of about 27 mW.Comment: 5 pages, 5 figure
Multiorder coherent Raman scattering of a quantum probe field
We study the multiorder coherent Raman scattering of a quantum probe field in
a far-off-resonance medium with a prepared coherence. Under the conditions of
negligible dispersion and limited bandwidth, we derive a Bessel-function
solution for the sideband field operators. We analytically and numerically
calculate various quantum statistical characteristics of the sideband fields.
We show that the multiorder coherent Raman process can replicate the
statistical properties of a single-mode quantum probe field into a broad comb
of generated Raman sidebands. We also study the mixing and modulation of photon
statistical properties in the case of two-mode input. We show that the prepared
Raman coherence and the medium length can be used as control parameters to
switch a sideband field from one type of photon statistics to another type, or
from a non-squeezed state to a squeezed state and vice versa.Comment: 12 pages, 7 figures, to be published in Phys. Rev.
Glutamate, N-acetyl aspartate and psychotic symptoms in chronic ketamine users
Rationale:
Ketamine, a non-competitive NMDA receptor antagonist, induces acute effects resembling the positive, negative and cognitive symptoms of schizophrenia. Chronic use has been suggested to lead to persistent schizophrenia-like neurobiological changes.
Objectives:
This study aims to test the hypothesis that chronic ketamine users have changes in brain neurochemistry and increased subthreshold psychotic symptoms compared to matched poly-drug users.
Methods:
Fifteen ketamine users and 13 poly-drug users were included in the study. Psychopathology was assessed using the Comprehensive Assessment of At-Risk Mental State. Creatine-scaled glutamate (Glu/Cr), glutamate + glutamine (Glu + Gln/Cr) and N-acetyl aspartate (NAA/Cr) were measured in three brain regions—anterior cingulate, left thalamus and left medial temporal cortex using proton magnetic resonance spectroscopy.
Results:
Chronic ketamine users had higher levels of subthreshold psychotic symptoms (p < 0.005, Cohen’s d = 1.48) and lower thalamic NAA/Cr (p < 0.01, d = 1.17) compared to non-users. There were no differences in medial temporal cortex or anterior cingulate NAA/Cr or in Glu/Cr or Glu + Gln/Cr in any brain region between the two groups. In chronic ketamine users, CAARMS severity of abnormal perceptions was directly correlated with anterior cingulate Glu/Cr (p < 0.05, r = 0.61—uncorrected), but NAA/Cr was not related to any measures of psychopathology.
Conclusions:
The finding of lower thalamic NAA/Cr in chronic ketamine users may be secondary to the effects of ketamine use compared to other drugs of abuse and resembles previous reports in individuals at genetic or clinical risk of schizophrenia
Early results of fissurectomy and advancement flap for resistant chronic anal fissure without hypertonia of the internal anal sphincter
The aim of this study was to assess the efficacy of fissurectomy with skin advancement flap in healing chronic anal fissures without hypertonia of the internal anal sphincter. Twenty-six consecutive patients who failed healing after well-practiced topical medical therapy were enrolled. Anorectal manometry was performed preoperative and 6 months postoperatively. All patients were treated with fissurectomy and advancement flap through healthy skin tissue. All patients healed completely within 30 days from operation. The intensity and the duration of pain postdefecation was reduced significantly with respect to the preoperative values starting from the first defecation. One patient suffered urinary retention, two patients suffered infections, and two partial breakdowns were recorded. At 6 months the maximum resting pressure values were similar to those were detected preoperatively. One month after surgery, anal incontinence was reported in seven patients, four of whom complained about it preoperatively. At 12 months, only three subjects reported incontinence. No patients needed reoperation and no recurrences were detected. The fissurectomy, in combination with advancement flap, is a safe sphincter-saving procedure for the treatment of chronic anal fissures without hypertonia of internal anal sphincter that fails medical conservative treatment
Dark States and Interferences in Cascade Transitions of Ultra-Cold Atoms in a Cavity
We examine the competition among one- and two-photon processes in an
ultra-cold, three-level atom undergoing cascade transitions as a result of its
interaction with a bimodal cavity. We show parameter domains where two-photon
transitions are dominant and also study the effect of two-photon emission on
the mazer action in the cavity. The two-photon emission leads to the loss of
detailed balance and therefore we obtain the photon statistics of the cavity
field by the numerical integration of the master equation. The photon
distribution in each cavity mode exhibits sub- and super- Poissonian behaviors
depending on the strength of atom-field coupling. The photon distribution
becomes identical to a Poisson distribution when the atom-field coupling
strengths of the modes are equal.Comment: 15 pages including 7 figures in Revtex, submitted to PR
Enhancement Effects of Transition and Vavilov-Cherenkov Radiation Mechanisms Under Grazing Interaction of Fast Electrons With a Thick Substrate Applied by Thin Layer
The paper presents the results of a theoretical study and a mathematical model of radiation processes occurred during the grazing interaction of fast electrons with semi-infinite targets applied on a thin amorphous layer. The developed model considers Vavilov-Cherenkov and transition radiation mechanisms and predicts the possibility to enhance the angular radiation density under grazing incidence of fast electrons on the layer. The characteristics of possible extreme vacuum ultraviolet and soft X-ray sources are estimated
Proceedings of the Salford Postgraduate Annual Research Conference (SPARC) 2011
These proceedings bring together a selection of papers from the 2011 Salford Postgraduate Annual Research Conference(SPARC). It includes papers from PhD students in the arts and social sciences, business, computing, science and engineering, education, environment, built environment and health sciences. Contributions from Salford researchers are published here alongside papers from students at the Universities of Anglia Ruskin, Birmingham City, Chester,De Montfort, Exeter, Leeds, Liverpool, Liverpool John Moores and Manchester
PEGylated G-CSF (BBT-015), GM-CSF (BBT-007), and IL-11 (BBT-059) analogs enhance survival and hematopoietic cell recovery in a mouse model of the hematopoietic syndrome of the acute radiation syndrome
Hematopoietic growth factors (HGF) are recommended therapy for high dose radiation exposure, but unfavorable administration schedules requiring early and repeat dosing limit the logistical ease with which they can be used. In this report, using a previously described murine model of H-ARS, survival efficacy and effect on hematopoietic recovery of unique PEGylated HGF were investigated. The PEGylated-HGFs possess longer half-lives and more potent hematopoietic properties than corresponding non-PEGylated-HGFs. C57BL/6 mice underwent single dose lethal irradiation (7.76-8.72 Gy, Cs, 0.62-1.02 Gy min) and were treated with various dosing regimens of 0.1, 0.3, and 1.0 mg kg of analogs of human PEG-G-CSF, murine PEG-GM-CSF, or human PEG-IL-11. Mice were administered one of the HGF analogs at 24-28 h post irradiation, and in some studies, additional doses given every other day (beginning with the 24-28 h dose) for a total of three or nine doses. Thirty-day (30 d) survival was significantly increased with only one dose of 0.3 mg kg of PEG-G-CSF and PEG-IL-11 or three doses of 0.3 mg kg of PEG-GM-CSF (p ≤ 0.006). Enhanced survival correlated with consistently and significantly enhanced WBC, NE, RBC, and PLT recovery for PEG-G- and PEG-GM-CSF, and enhanced RBC and PLT recovery for PEG-IL-11 (p ≤ 0.05). Longer administration schedules or higher doses did not provide a significant additional survival benefit over the shorter, lower dose, schedules. These data demonstrate the efficacy of BBT's PEG-HGF to provide significantly increased survival with fewer injections and lower drug doses, which may have significant economic and logistical value in the aftermath of a radiation event
- …
