6 research outputs found

    A Classification Model for Managers by Competencies: A Case Study in the Construction Sector

    Get PDF
    Many companies have difficulties in filling managerial positions. This is because there is a lack in understanding of the competencies that a manager must have. This is as true for those responsible for selecting managers as it is for the employee who aspires to be a manager. Furthermore, the construction industry seeks to appoint managers who are likely to excel in several different managerial roles. However, currently, there is no model that classifies managers by the different competencies they need to perform specific functions. This paper presents how a nonordered classification method was applied in a construction company in order to select managers for different roles. While no manager is considered to be more important than any other, they nevertheless need to have different competencies that match those needed for the job assigned to them. The model also serves as a guide for evaluating whether or not those already in or being considered for a managerial position have the competencies required

    Proceedings of the fourth Resilience Engineering Symposium

    No full text
    These proceedings document the various presentations at the Fourth Resilience Engineering Symposium held on June 8-10, 2011, in Sophia-Antipolis, France. The Symposium gathered participants from five continents and provided them with a forum to exchange experiences and problems, and to learn about Resilience Engineering from the latest scientific achievements to recent practical applications. The First Resilience Engineering Symposium was held in Söderköping, Sweden, on October 25-29 2004. The Second Resilience Engineering Symposium was held in Juan-les-Pins, France, on November 8-10 2006, The Third Resilience Engineering Symposium was held in Juan-les-Pins, France, on October 28-30 2008. Since the first Symposium, resilience engineering has fast become recognised as a valuable complement to the established approaches to safety. Both industry and academia have recognised that resilience engineering offers valuable conceptual and practical basis that can be used to attack the problems of interconnectedness and intractability of complex socio-technical systems. The concepts and principles of resilience engineering have been tested and refined by applications in such fields as air traffic management, offshore production, patient safety, and commercial fishing. Continued work has also made it clear that resilience is neither limited to handling threats and disturbances, nor confined to situations where something can go wrong. Today, resilience is understood as the intrinsic ability of a system to adjust its functioning prior to, during, or following changes and disturbances, so that it can sustain required operations under both expected and unexpected conditions. This definition emphasizes the ability to continue functioning, rather than simply to react and recover from disturbances and the ability to deal with diverse conditions of functioning, expected as well as unexpected. For anyone who is interested in learning more about Resilience Engineering, the books published in the Ashgate Studies in Resilience Engineering provide an excellent starting point. Another sign that Resilience Engineering is coming of age is the establishment of the Resilience Engineering Association. The goal of this association is to provide a forum for coordination and exchange of experiences, by bringing together researchers and professionals working in the Resilience Engineering domain and organisations applying or willing to apply Resilience Engineering principles in their operations. The Resilience Engineering Association held its first General Assembly during the Fourth Symposium, and will in the future play an active role in the organisation of symposia and other activities related to Resilience Engineering
    corecore