16 research outputs found

    An automated retrospective VAE-surveillance tool for future quality improvement studies.

    Get PDF
    Ventilator-associated pneumonia (VAP) is a frequent complication of mechanical ventilation and is associated with substantial morbidity and mortality. Accurate diagnosis of VAP relies in part on subjective diagnostic criteria. Surveillance according to ventilator-associated event (VAE) criteria may allow quick and objective benchmarking. Our objective was to create an automated surveillance tool for VAE tiers I and II on a large data collection, evaluate its diagnostic accuracy and retrospectively determine the yearly baseline VAE incidence. We included all consecutive intensive care unit admissions of patients with mechanical ventilation at Bern University Hospital, a tertiary referral center, from January 2008 to July 2016. Data was automatically extracted from the patient data management system and automatically processed. We created and implemented an application able to automatically analyze respiratory and relevant medication data according to the Centers for Disease Control protocol for VAE-surveillance. In a subset of patients, we compared the accuracy of automated VAE surveillance according to CDC criteria to a gold standard (a composite of automated and manual evaluation with mediation for discrepancies) and evaluated the evolution of the baseline incidence. The study included 22'442 ventilated admissions with a total of 37'221 ventilator days. 592 ventilator-associated events (tier I) occurred; of these 194 (34%) were of potentially infectious origin (tier II). In our validation sample, automated surveillance had a sensitivity of 98% and specificity of 100% in detecting VAE compared to the gold standard. The yearly VAE incidence rate ranged from 10.1-22.1 per 1000 device days and trend showed a decrease in the yearly incidence rate ratio of 0.96 (95% CI, 0.93-1.00, p = 0.03). This study demonstrated that automated VAE detection is feasible, accurate and reliable and may be applied on a large, retrospective sample and provided insight into long-term institutional VAE incidences. The surveillance tool can be extended to other centres and provides VAE incidences for performing quality control and intervention studies

    WRSE - a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU

    No full text
    Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of early-warning systems. Static risk scores, such as APACHE or SAPS, have been supplemented with data-driven approaches that track dynamic mortality risk over time. Recent works have focused on enhancing the information delivered to clinicians even further by producing full survival distributions instead of point predictions or fixed horizon risks. In this work, we propose a non-parametric ensemble model, Weighted Resolution Survival Ensemble (WRSE), tailored to estimate such dynamic individual survival distributions. Inspired by the simplicity and robustness of ensemble methods, the proposed approach combines a set of binary classifiers spaced according to a decay function reflecting the relevance of short-term predictions. Models and baselines are evaluated under weighted calibration and discrimination metrics for individual survival distributions, which closely reflect the utility of a model in ICU practice. We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x.ISSN:2640-349

    WRSE -- a non-parametric weighted-resolution ensemble for predicting individual survival distributions in the ICU

    No full text
    Dynamic assessment of mortality risk in the intensive care unit (ICU) can be used to stratify patients, inform about treatment effectiveness or serve as part of an early-warning system. Static risk scoring systems, such as APACHE or SAPS, have recently been supplemented with data-driven approaches that track the dynamic mortality risk over time. Recent works have focused on enhancing the information delivered to clinicians even further by producing full survival distributions instead of point predictions or fixed horizon risks. In this work, we propose a non-parametric ensemble model, Weighted Resolution Survival Ensemble (WRSE), tailored to estimate such dynamic individual survival distributions. Inspired by the simplicity and robustness of ensemble methods, the proposed approach combines a set of binary classifiers spaced according to a decay function reflecting the relevance of short-term mortality predictions. Models and baselines are evaluated under weighted calibration and discrimination metrics for individual survival distributions which closely reflect the utility of a model in ICU practice. We show competitive results with state-of-the-art probabilistic models, while greatly reducing training time by factors of 2-9x

    Systematic Review and Comparison of Publicly Available ICU Data Sets-A Decision Guide for Clinicians and Data Scientists.

    No full text
    OBJECTIVE As data science and artificial intelligence continue to rapidly gain traction, the publication of freely available ICU datasets has become invaluable to propel data-driven clinical research. In this guide for clinicians and researchers, we aim to: 1) systematically search and identify all publicly available adult clinical ICU datasets, 2) compare their characteristics, data quality, and richness and critically appraise their strengths and weaknesses, and 3) provide researchers with suggestions, which datasets are appropriate for answering their clinical question. DATA SOURCES A systematic search was performed in Pubmed, ArXiv, MedRxiv, and BioRxiv. STUDY SELECTION We selected all studies that reported on publicly available adult patient-level intensive care datasets. DATA EXTRACTION A total of four publicly available, adult, critical care, patient-level databases were included (Amsterdam University Medical Center data base [AmsterdamUMCdb], eICU Collaborative Research Database eICU CRD], High time-resolution intensive care unit dataset [HiRID], and Medical Information Mart for Intensive Care-IV). Databases were compared using a priori defined categories, including demographics, patient characteristics, and data richness. The study protocol and search strategy were prospectively registered. DATA SYNTHESIS Four ICU databases fulfilled all criteria for inclusion and were queried using SQL (PostgreSQL version 12; PostgreSQL Global Development Group) and analyzed using R (R Foundation for Statistical Computing, Vienna, Austria). The number of unique patient admissions varied between 23,106 (AmsterdamUMCdb) and 200,859 (eICU-CRD). Frequency of laboratory values and vital signs was highest in HiRID, for example, 5.2 (±3.4) lactate values per day and 29.7 (±10.2) systolic blood pressure values per hour. Treatment intensity varied with vasopressor and ventilatory support in 69.0% and 83.0% of patients in AmsterdamUMCdb versus 12.0% and 21.0% in eICU-CRD, respectively. ICU mortality ranged from 5.5% in eICU-CRD to 9.9% in AmsterdamUMCdb. CONCLUSIONS We identified four publicly available adult clinical ICU datasets. Sample size, severity of illness, treatment intensity, and frequency of reported parameters differ markedly between the databases. This should guide clinicians and researchers which databases to best answer their clinical questions

    Early prediction of circulatory failure in the intensive care unit using machine learning.

    No full text
    Intensive-care clinicians are presented with large quantities of measurements from multiple monitoring systems. The limited ability of humans to process complex information hinders early recognition of patient deterioration, and high numbers of monitoring alarms lead to alarm fatigue. We used machine learning to develop an early-warning system that integrates measurements from multiple organ systems using a high-resolution database with 240 patient-years of data. It predicts 90% of circulatory-failure events in the test set, with 82% identified more than 2 h in advance, resulting in an area under the receiver operating characteristic curve of 0.94 and an area under the precision-recall curve of 0.63. On average, the system raises 0.05 alarms per patient and hour. The model was externally validated in an independent patient cohort. Our model provides early identification of patients at risk for circulatory failure with a much lower false-alarm rate than conventional threshold-based systems
    corecore