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An automated retrospective 
VAE‑surveillance tool for future 
quality improvement studies
Oliver Wolffers1,2*, Martin Faltys3, Janos Thomann1, Stephan M. Jakob3, Jonas Marschall1, 
Tobias M. Merz3,4 & Rami Sommerstein1,5*

Ventilator‑associated pneumonia (VAP) is a frequent complication of mechanical ventilation and 
is associated with substantial morbidity and mortality. Accurate diagnosis of VAP relies in part 
on subjective diagnostic criteria. Surveillance according to ventilator‑associated event (VAE) 
criteria may allow quick and objective benchmarking. Our objective was to create an automated 
surveillance tool for VAE tiers I and II on a large data collection, evaluate its diagnostic accuracy and 
retrospectively determine the yearly baseline VAE incidence. We included all consecutive intensive 
care unit admissions of patients with mechanical ventilation at Bern University Hospital, a tertiary 
referral center, from January 2008 to July 2016. Data was automatically extracted from the patient 
data management system and automatically processed. We created and implemented an application 
able to automatically analyze respiratory and relevant medication data according to the Centers for 
Disease Control protocol for VAE‑surveillance. In a subset of patients, we compared the accuracy of 
automated VAE surveillance according to CDC criteria to a gold standard (a composite of automated 
and manual evaluation with mediation for discrepancies) and evaluated the evolution of the baseline 
incidence. The study included 22′442 ventilated admissions with a total of 37′221 ventilator days. 592 
ventilator‑associated events (tier I) occurred; of these 194 (34%) were of potentially infectious origin 
(tier II). In our validation sample, automated surveillance had a sensitivity of 98% and specificity of 
100% in detecting VAE compared to the gold standard. The yearly VAE incidence rate ranged from 
10.1–22.1 per 1000 device days and trend showed a decrease in the yearly incidence rate ratio of 0.96 
(95% CI, 0.93–1.00, p = 0.03). This study demonstrated that automated VAE detection is feasible, 
accurate and reliable and may be applied on a large, retrospective sample and provided insight into 
long‑term institutional VAE incidences. The surveillance tool can be extended to other centres and 
provides VAE incidences for performing quality control and intervention studies.

Background/rationale. Ventilator-associated pneumonia (VAP) is a frequent healthcare-associated 
 infection1 with high crude and attributable mortality  rates2–4. Clinical criteria to diagnose VAP lack sensitivity 
and specificity when compared to autopsy  reports5 and were shown to be associated with substantial inter-
observer  variability6, making the diagnosis of VAP difficult and not uniformly defined. In 2013 the United States’ 
Centers for Disease Control and Prevention (CDC) released its new surveillance protocol for ventilator-associ-
ated events (VAE) in order to address the above-mentioned  problems7. The protocol consists of three tiers with 
a stepwise approach: Tier I—Ventilator-associated condition (VAC)—is defined as worsening oxygenation after 
a baseline period of two days with stable or decreasing positive end-expiratory pressure (PEEP) or fraction of 
inspired  O2  (FiO2). Tier II—infectious ventilator-associated condition (IVAC)—consists of all VAC with a newly 
administered antimicrobial agent and either an abnormal white blood cell count (WBC) or body temperature 
outside the normal range. Tier III represents possible ventilator-associated pneumonia (PVAP), comprising 
IVAC with either purulent respiratory secretions or detection of a defined set of pulmonary pathogens. Screen-
ing for VAC has shown non-inferior sensitivity and specificity for diagnosing  VAP8 when compared to classical 
criteria like national healthcare safety network PNEU  criteria9 requiring clinical signs of pulmonary infection, 
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imaging and pathological laboratory results. Classification according to VAE-criteria was reported to be a supe-
rior predictor of  outcomes10.

Since its introduction, several implementations of automation have been described in the United States and 
the  Netherlands11–13. VAE reporting has become mandatory in parts of the United States, where an economic 
incentive to streamline VAE surveillance was created. To our knowledge, the VAE protocol for VAP surveillance 
has not yet been formally implemented outside of the US. Our aim was therefore to create a fully automated VAE 
surveillance tool for the first two tiers of the CDC VAE surveillance protocol and assess its diagnostic accuracy. 
Furthermore, we aimed to determine whether the retrospectively identified cases indicated a dynamic in the 
VAE incidences from 2008 to 2016 and to establish a baseline incidence.

Methods
Study design. Creation of a fully automated surveillance tool and retrospective analysis of VAE cases.

Setting. This validation study of a retrospective surveillance was carried out at Bern University Hospital, a 
Swiss tertiary care hospital with 950 beds and 4500 ICU admissions per year, most of them being mechanically 
ventilated for at least a short period. The ICU is organised as an interdisciplinary 37-bed unit admitting all adult 
surgical and medical patients. Clinical data was prospectively collected in the unit’s electronic patient data man-
agement system (PDMS; GE Centricity Critical Care, General Electrics, Helsinki, Finland). This PDMS provides 
a versatile information management tools for the intensive care unit. It handles the fully automated collection of 
equipment data, and ensures reliable treatment documentation at the bedside.

Participants. All patient admissions to the ICU between January 2008 and July 2016 with at least one record 
of mechanical ventilation were included in the study.

Variables. The primary outcome variable was the occurrence of a VAE (Tier I or II; according to CDC 
 criteria7).

In accordance with Shenoy et al.14 we defined our “gold standard” for VAE as a composite of detected cases 
either identified by manual and/or automated  surveillance14 with a formalized resolution of differences. In case 
of disagreement between the two methods, presence or absence of VAE was determined by an independent 
senior infection prevention physiciant.

Criteria for VAE tiers I and II were defined by the CDC protocol and included minimal daily  FiO2, minimal 
daily PEEP, minimal and maximal daily body temperature; minimal and maximal daily WBC and new antimi-
crobial agent administration.

Manual surveillance was performed by an unbiased member of the study team on plotted data of the criterion 
variables, an example can be seen in supplementary Fig. 2.

The number of ventilated patients per day was defined as presence of mechanical ventilation at noon of a 
given day (defined by a two-hour window around 12:00).

Data source/measurements. Criteria variables were obtained via a structured query from the ICU’s 
PDMS repository. Automatically measured values were recorded every two minutes (e.g.,  FiO2) to 15 min (e.g. 
PEEP), manually documented values according to clinical necessity, but at least once per 8 h shift (e.g., tympanic 
temperature). Administration of antimicrobial therapy and the corresponding dose was also extracted automati-
cally from the PDMS. The source of the information per criterion variable varied over the years and some criteria 
had multiple concurrent sources for one individual (e.g., temperature from axillary and tympanic measure-
ment). Data source and measurements are summarised in Supplementary Table 1. The protocol and source code 
documenting how the raw data was cleared, handled, and evaluated for VAEs is available  online15.

We created a software called “Event Reader” (C#, .Net version 4.5 with Windows Presentation Foundation 
[WPF] front end) to process the criteria variables into one single daily value per variable, as required to calculate 
VAEs. There was no distinct variable signalling mechanical ventilation over the entire observation span. The 
period of mechanical ventilation was thus derived from the continuous availability (one measurement per 6 min 
window) of end-tidal  CO2  (etCO2) measurements in ventilated patients. Only  FiO2 and PEEP values recorded 
during this period of time were used in our analysis. Data cleaning was performed at this step as described 
below. The resulting daily variables per patients were then automatically entered into a Microsoft Access database 
(Microsoft, Redmond WA, U.S.).

To calculate VAEs, the same software (Event Reader) applied a slightly adapted algorithm (as described 
 before16) from the daily variables of the Access database (Supplementary Fig. 1).

Data cleaning and sensitivity analysis. The recorded respiratory values contained outlying values that 
likely were incorrect measurements or unintended deviations (example visualized in Supplementary Fig. 2). The 
CDC’s rules define the minimum respiratory parameters per day as the value kept stable over at least one hour 
or if no such value was available to use the lowest recorded value. As previously  suggested12, we corrected for low 
outliers excluding a predetermined percentage of the lowest values, since only they influence the recorded lowest 
daily value. A sensitivity analysis was carried out to ascertain the correct threshold (comparing exclusion of the 
lowest 5% and 10% to no exclusion).

Measured PEEP and especially  FiO2 values tended to oscillate around the set value. We anticipated an issue 
in instances where the measured value such as  FiO2 did not correspond exactly to the set value, e.g. a  FiO2 that 
was set to 60% but being measured as 58%. To correct for this potential signal noise, we investigated different 
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tolerances to the standard CDC’s predefined threshold of worsening of ventilation (increase of 3 cm  H2O PEEP 
and/or 20%  FiO2). We carried out a sensitivity analysis comparing threshold tolerances of 0%, 10% and 20%, 
respectively.

Confounding  FiO2 and PEEP values from non-invasive ventilation were excluded from VAE screening because 
a period of assisted ventilation longer than 3 calendar days was needed to qualify for VAE. Institutional policy 
prohibits such long periods of non-invasive ventilation.

Study size. Study size was determined by the number of patients with at least one episode of mechanical 
ventilation during the study period.

Quantitative variables. FiO2 values below 0.30 were set to 0.30, PEEP-values below 5  cmH2O to 5. Tem-
perature values below 35 °C and above 42 °C were excluded.

Statistical methods. We applied confusion matrices to obtain the sensitivity, specificity, and positive and 
negative predictive (PPV and NPV) values of the VAEs determined by automated surveillance compared to the 
gold standard.

We chose three samples to compare the automated surveillance’s performance:
(1) a convenience sample of 131 admissions with prolonged mechanical ventilation periods of 21–27 days 

to determine sensitivity and specificity regarding VAC detection, (2) a random (sample_n, dplyr package in R), 
sample of 100 VAC out of all VAC as identified by the algorithm to determine primarily specificity compared to 
the composite gold standard and (3) a random sample of 100 verified (according to the gold standard) VAC to 
evaluate the algorithm’s sensitivity and specificity for detection of IVAC. Suppl. Figure 4 summarizes the selec-
tion of different validation samples.

Sensitivity analysis for threshold augmentation and outlier cutoffs were carried out using the same conveni-
ence sample.

The yearly VAE incidence rate was defined as the number of VAEs per 1000 ventilator days and analysed 
per year for the surveillance period. Potential trends in the rate were evaluated by a Poisson regression model.

Ethics approval and consent to participate. According to Swiss federal law, healthcare-associated 
infection surveillance is considered a quality improvement project and therefore exempt from ethical approval. 
This study was carried out in accordance with relevant guidelines and regulations.

Results
Creation and validation of a fully automated VAE surveillance. During the observation period 
from January 2008 to May 2016, 22′442 admissions of ventilated patients with a total of 37′221 ventilator days 
(Flowchart, Fig. 1) occurred and were included in the analysis. Patients were ventilated for a median of 1 day 
(IQR 1–3). Automated surveillance detected 592 VAE in 2.5% of all the patients. This corresponds to 15.9 
VAEs/1000 ventilator days (95% CI, 14.7—17.2). Note that as per the CDC protocol, we included all ventilated 
patients in the denominator, even those not ventilated for 4 calendar days which per definition could not qualify 
for VAE. Of the VACs, 205 (35%) were IVACs.

Automated surveillance was faster than manual surveillance. The entire observation period with around 
22′400 admissions was screened automatically in around 12 h using a standard laptop computer. Conversely, 
screening a single admission using manual surveillance required an experienced observer around 2 min per case 
which would have resulted in around 800 h for manual surveillance of the entire dataset.

Evaluation of diagnostic accuracy. In the convenience sample of the 131 patients with ventilation of 21 
to 27 days, the sensitivity of automated surveillance with the Event Reader compared to the gold standard dem-
onstrated a sensitivity of 98%, a specificity of 100%, an NPV 99% and a PPV of 100% (Table 1).

Conversely, manual surveillance against the gold standard for determination of VAC (Tier I) was 76%, the 
specificity 96%, the positive predictive value (PPV) 89%, and the negative predictive value (NPV) 90%.

For the VAC validation step with the randomly selected 100 VAEs (as determined by the reader), specificity 
was 99% and PPV 99% when compared to the gold standard.

In a randomly generated sample of 100 VAC (Tier II), the sensitivity of automated surveillance for IVAC 
detection was 100% and the specificity 100% compared to the gold standard. Manual surveillance yielded a 
sensitivity of 88% and a specificity of 97% (Table 2).

The additional analysis for evaluating the influence of low outliers showed the algorithms best sensitivity 
for a cut-off value of 5% (98%), while cut-offs of 0% and 10% had a sensitivity of 63% and 91%, respectively 
(Table 1) when compared to the gold standard. Best specificity was also reached with the 5% cut-off (100%). 
The additional analysis regarding  FiO2/PEEP increase tolerance thresholds yielded no influence on sensitivity/
specificity (Table 1).

Determination of yearly VAE incidence. The yearly VAE incidence rate per 1000 device days is shown 
in Fig. 2 and Table 3. It ranged from 22.1/1000 ventilator days (95% CI 17.4–26.3) in 2008 to 10.1/1000 (CI 
7.0–15.8) 2016. Over the entire observation period there was an incidence rate of 15.9/1000 ventilator days (95% 
CI 14.7–17.2). 

According to our Poisson regression model, there was a significant yearly incidence decrease at a rate ratio 
of 0.96 (95% CI, 0.93—1.00, p = 0.03). When excluding 2008 and 2016 which had considerably less records 
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Figure 1.  Flowchart showing information flow and information processing. VAC Ventilator associated 
condition; IVAC Infectious ventilator associated condition.

Table 1.  Analysis for sensitivity and specificity comparing VAC-surveillance to the gold standard. Cut-off 
indicates the percentage setting of the lowest outliers being excluded at import. Threshold shows different 
tolerance threshold settings for including respiratory deterioration as significant according to VAE rules. TP 
True Positive; FP False Positive; FN False Negative; TN True Negative; VAC Ventilator Associated Condition.

Mode Cut-off Threshold TP FP FN TN Total Sensitivity Specificity

Auto 5% 10% 42 0 1 89 132 0.98 1

Auto 0% 10% 27 8 16 85 136 0.63 0.91

Auto 10% 10% 39 4 4 87 134 0.91 0.96

Auto 5% 0% 42 0 1 89 132 0.98 1

Auto 5% 10% 42 0 1 89 132 0.98 1

Auto 5% 20% 42 0 1 89 132 0.98 1

Manual Visual Visual 32 4 10 86 132 0.76 0.96

Table 2.  Analysis for sensitivity and specificity comparing IVAC surveillance to the gold standard 
surveillance. TP True Positive; FP False Positive; FN False Negative; TN True Negative; IVAC Infectious 
Ventilator Associated Condition.

Setting TP FP FN TN Total Sensitivity Specificity PPV NPV

Automated 35 0 0 65 100 1 1 1 1

Manual 29 2 4 65 100 0.88 0.97 0.94 0.94
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available, the yearly incidence rate ratio showed no statistically significant change over the observation period 
(1.01; 95% CI, 0.97–1.06, p = 0.61).

Discussion
We created and validated an automated VAE surveillance and retrospectively evaluated its diagnostic accuracy. 
Automated surveillance was faster and more reliable than manual surveillance for the detection of VAE. The 
incidence rate ratio showed a slight but statistically significant reduction over the observation period. To our 
knowledge, our results represent by number of enrolled patients the largest dataset employed to  date17. This 
implementation was feasible even though the variable “mechanical ventilation” itself—a prerequisite for VAE—
was not available in the PDMS. The tool can readily be adapted to other data platforms and their respective 
electronic health records. Our findings are in accordance with previous studies, albeit with our study having a 
significantly larger sample size concerning the observation  period11–13,16.

The incidence rate ratio showed a slight but significant decrease over the observation period that was mostly 
caused by the first and last year (2008 and 2016) in the observation period, which did have a significantly lower 
number of records. When looking at the period from 2009 to 2015 there was no change in the incidence rate 
ratio. We acknowledge that the long term incidence rate depends on the validation of a small subset. Therefore, 

Figure 2.  Incidence of VAE from 2008 to 2016. VAE Ventilator associated events.

Table 3.  Ventilator associated events per year. VAE Ventilator associated events; Device days Total number of 
ventilated patient days; CI Confidence Interval.

Year VAE Device days Ratio Lower 95% CI Upper 95% CI

2008 94 4251 22.1 18 27.1

2009 71 4100 17.3 13.6 21.9

2010 60 4223 14.2 11 18.4

2011 67 4634 14.5 11.3 18.4

2012 58 4303 13.5 10.3 17.5

2013 69 4582 15.1 11.8 19.1

2014 70 4333 16.2 12.7 20.5

2015 77 4430 17.4 13.8 21.8

2016 26 2365 11 7.34 16.3
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492/592 VAEs have not been confirmed by manual surveillance and we cannot exclude that sensitivity and pre-
dictive value for all VAEs may differ from the validated subset.

Most manual detection errors lay in mere oversights while screening the available data, resulting in error. 
Automated surveillance was not only more precise but also much quicker, even when using standard electronic 
equipment.

The sensitivity analysis for import cut-offs confirmed earlier publications that showed a superiority of using 
a percentage cut-off at  import12. Sensitivity analysis to determine the amount of lowest outlying values ignored 
at import showed a superiority of using a 5% cut-off compared to using 0% cut-off where even small artefacts 
distorted the daily lowest recorded values. Using a 10% cut-off turned out to ignore too many relevant data points. 
Sensitivity analysis for the tolerance of respiratory deterioration values revealed no difference in sensitivity when 
varying the tolerance between 0 and 20% for the examined sample with no additional VAC being found. Thus, 
using cut-offs to accommodate for measured values oscillating around a set point showed to be less important.

Internal validity proved to be excellent as is shown by the very high sensitivity and specificity. The stability 
of our results over the years also may indicate a considerable robustness of our approach. Furthermore, our 
calculated event rate per 1000 ventilator days was in the same range as the 10/1000 ventilator days as estimated 
by Klein et.  al12.

As was shown  previously18,19, automated VAE surveillance can be liable to being gamed in order to reduce the 
incidence of VAC and thus reduce the overall prevalence of VAE. Since VAE has so far not been used as a metric 
we do not think this applies to this dataset which actually reflects the true incidence over the observation period.

This automated surveillance comes at a price however, as was also shown in other  studies20: ongoing surveil-
lance requires continuous maintenance in order to keep it operational with prospective software changes.

Limitations. Our study has several limitations. First, an inherent limitation was that non-invasive ventila-
tion was also identified as mechanical ventilation as the database does not contain a variable over the entire 
observation period to reliably indicate the presence of an artificial airway. It is important to note that per insti-
tutional regulations, non-invasive ventilation is rarely maintained for > 48 h and therefore we are confident that 
all VAE did occur under invasive mechanical ventilation. While this limitation affects denominator data, it did 
not confound identification of VAE. If institutional regulations concerning the usual duration of non-invasive 
ventilation were different, this would lead to an overestimation of VAE incidence. Second, because of overall 
rather low prevalence of VAE, we used a small sample of patients who were ventilated for more than 22 days, thus 
yielding samples with more complicated cases to evaluate. This may have negatively impacted the performance 
of manual surveillance, thus the advantage of automated performance compared to manual surveillance might 
be less important in a more representative sample with cases of shorter duration. We differed in our approach 
from the CDC guidelines considering the definition of the lowest recorded respiratory value as we used the 
lowest recorded value after excluding the lowest 5%, a comparison with the standard approach using the lowest 
hourly setting was considered less feasible for technical reasons.

Outlook. As we have shown, an implementation of a retrospective VAE surveillance tool is feasible, even 
when the data management system at the local ICU was initially not set up for this purpose.We believe that 
this approach can be taken in hospitals using similar patient data management systems and only at modest cost 
and effort. This would permit the retrospective establishment of a baseline VAE incidence. Quality control and 
intervention studies should be undertaken to investigate changes, possibly resulting in a lower VAE incidence. 
The artefact removal rate may depend on the used equipment in the respective ICU. Close coordination between 
infection preventionists and information technology specialists is necessary in order to achieve a smooth inte-
gration. Specifically, the information infrastructure of this hospital was not designed for easy data extraction and 
computation in the context of research projects. Automated surveillance requires maintenance as well, especially 
in preserving a robust data structure despite changes in hard- or software.

Conclusion
We created a VAE surveillance which is ready to be implemented in an ICU with a patient data management 
system using high sampling frequency. As we have shown in our samples, automated surveillance is more sen-
sitive and more specific than manual surveillance, thus enabling transition to more comprehensive and more 
reliable VAE surveillance programs. This study demonstrates that automated VAE detection is feasible on a large, 
retrospective sample. The tool could readily be expanded to further centres. It can be used as routine screening 
for VAE, thus establishing a baseline incidence for future quality control and intervention studies.

Data availability
The datasets generated and/or analysed during the current study are not publicly available due to institutional 
privacy guidelines but are available from the corresponding author on reasonable request.
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