3 research outputs found

    Improving the reach of vaccines to low-resource regions, with a needle-free vaccine delivery device and long-term thermostabilization

    Get PDF
    Dry-coated microprojections can deliver vaccine to abundant antigen-presenting cells in the skin and induce efficient immune responses and the dry-coated vaccines are expected to be thermostable at elevated temperatures. In this paper, we show that we have dramatically improved our previously reported gas-jet drying coating method and greatly increased the delivery efficiency of coating from patch to skin to from 6.5% to 32.5%, by both varying the coating parameters and removing the patch edge. Combined with our previous dose sparing report of influenza vaccine delivery in a mouse model, the results show that we now achieve equivalent protective immune responses as intramuscular injection (with the needle and syringe), but with only 1/30th of the actual dose. We also show that influenza vaccine coated microprojection patches are stable for at least 6 months at 23 degrees C. inducing comparable immunogenicity with freshly coated patches. The dry-coated microprojection patches thus have key and unique attributes in ultimately meeting the medical need in certain low-resource regions with low vaccine affordability and difficulty in maintaining "cold-chain" for vaccine storage and transport. (C) 2011 Elsevier B.V. All rights reserved

    Nanocomposite-Strengthened Dissolving Microneedles for Improved Transdermal Delivery to Human Skin

    Get PDF
    Delivery of drugs and biomolecules into skin has significant advantages. To achieve this, herein, a nanomaterial-strengthened dissolving microneedle patch for transdermal delivery is reported. The patch comprises thousands of microneedles, which are composed of dissolving polymers, nanomaterials, and drug/biomolecules in their interior. With the addition of nanomaterials, the mechanical property of generally weak dissolving polymers can be dramatically improved without sacrificing dissolution rate within skin. In this experiments, layered double hydroxides (LDH) nanoparticles are incorporated into sodium carboxymethylcellulose (CMC) to form a nanocomposite. The results show that, by adding 5 wt% of LDH nanoparticles into CMC, the mechanical strength significantly increased. Small and densely packed CMC-LDH microneedles penetrate human and pig skin more reliably than pure CMC ones and attractively the nanocomposite-strengthened microneedles dissolve in skin and release payload within only 1 min. Finally, the application of using the nanocomposite-strengthened microneedle arrays is tested for in vivo vaccine delivery and the results show that significantly stronger antibody response could be induced when compared with subcutaneous injection. These data suggest that nanomaterials could be useful for fabricating densely packed and small polymer microneedles that have robust mechanical properties and rapid dissolution rates and therefore potential use in clinical applications
    corecore