1,271 research outputs found

    On a Poisson reduction for Gel'fand--Zakharevich manifolds

    Full text link
    We formulate and discuss a reduction theorem for Poisson pencils associated with a class of integrable systems, defined on bi-Hamiltonian manifolds, recently studied by Gel'fand and Zakharevich. The reduction procedure is suggested by the bi-Hamiltonian approach to the Separation of Variables problem.Comment: Latex, 14 pages. Proceeding of the Conference "Multi-Hamiltonian Structures: Geometric and Algebraic Aspects". August 9-18, 2001 Bedlewo, Poland. To appear in ROM

    Exact Poisson pencils, τ\tau-structures and topological hierarchies

    Full text link
    We discuss, in the framework of Dubrovin-Zhang's perturbative approach to integrable evolutionary PDEs in 1+1 dimensions, the role of a special class of Poisson pencils, called exact Poisson pencils. In particular we show that, in the semisimple case, exactness of the pencil is equivalent to the constancy of the so-called "central invariants" of the theory that were introduced by Dubrovin, Liu and Zhang.Comment: 31 pages, final version to appear in Physica D: Nonlinear Phenomen

    A Note on the Rotationally Symmetric SO(4) Euler Rigid Body

    Get PDF
    We consider an SO(4) Euler rigid body with two 'inertia momenta' coinciding. We study it from the point of view of bihamiltonian geometry. We show how to algebraically integrate it by means of the method of separation of variables.Comment: This is a contribution to the Vadim Kuznetsov Memorial Issue on Integrable Systems and Related Topics, published in SIGMA (Symmetry, Integrability and Geometry: Methods and Applications) at http://www.emis.de/journals/SIGMA

    Bihamiltonian Geometry, Darboux Coverings, and Linearization of the KP Hierarchy

    Full text link
    We use ideas of the geometry of bihamiltonian manifolds, developed by Gel'fand and Zakharevich, to study the KP equations. In this approach they have the form of local conservation laws, and can be traded for a system of ordinary differential equations of Riccati type, which we call the Central System. We show that the latter can be linearized by means of a Darboux covering, and we use this procedure as an alternative technique to construct rational solutions of the KP equations.Comment: Latex, 27 pages. To appear in Commun. Math. Phy

    Krichever Maps, Faa' di Bruno Polynomials, and Cohomology in KP Theory

    Full text link
    We study the geometrical meaning of the Faa' di Bruno polynomials in the context of KP theory. They provide a basis in a subspace W of the universal Grassmannian associated to the KP hierarchy. When W comes from geometrical data via the Krichever map, the Faa' di Bruno recursion relation turns out to be the cocycle condition for (the Welters hypercohomology group describing) the deformations of the dynamical line bundle on the spectral curve together with the meromorphic sections which give rise to the Krichever map. Starting from this, one sees that the whole KP hierarchy has a similar cohomological meaning.Comment: 16 pages, LaTex using amssymb.sty. To be published in Lett. Math. Phy

    Dirac reduction revisited

    Full text link
    The procedure of Dirac reduction of Poisson operators on submanifolds is discussed within a particularly useful special realization of the general Marsden-Ratiu reduction procedure. The Dirac classification of constraints on 'first-class' constraints and 'second-class' constraints is reexamined.Comment: This is a revised version of an article published in J. Nonlinear Math. Phys. vol. 10, No. 4, (2003), 451-46
    corecore