149 research outputs found
Non-Linear modelling of Extreme High-Angle Waves Instability
Peer ReviewedPostprint (published version
How kilometric sandy shoreline undulations correlate with wave and morphology characteristics: preliminary analysis on the Atlantic coast of Africa
Sandy coasts are characterized by a number of rhythmic patterns like, amongst others, shoreline undulations or sandwaves at a kilometric scale. One hypothesis for their formation is that high angle waves (large incidence angle with respect to shore normal) could induce an instability of the shoreline (Ashton et al., 2001). More recently, a scaling for their wavelength has also been proposed (van den Berg et al., 2014). The existing studies rely mainly on modelling but quantitative field tests are lacking. We aim at investigating how both the formation hypothesis of these shoreline undulations and the theoretical scaling do fit with nature at a global scale. The first step, which is the goal of this paper, is to set up the methodology by analyzing the Atlantic African coast as test site. First, based on global databases, shoreline wavelength LS, wave characteristics (obliquity ¿W and wavelength ¿W) and mean shoreface slope ß are determined. Then the wave obliquity is confronted with the presence of shoreline undulations. Finally the values of the ratio ßLS / ¿W are estimated and discussed in comparison with the estimate of van den Berg et al. (2014). It is found that the correlation between shoreline sandwave occurrence and wave obliquity is very good, allowing the identification of 5 new potential unstable shoreline stretches, whereas the results on the scaling are not conclusive and deserve further investigations.Postprint (published version
Nearshore oblique sand bars
The coupling between hydrodynamics and the evolving topography in the surf zone has been theoretically examined for oblique wave incidence. It is shown that positive feedback can lead to the initial growth of several types of rhythmic systems of sand bars.
The bars can be down-current oriented or up-current oriented, which means that the offshore end of the bar is shifted down-current or up-current with respect to the shore attachment. In the limit of strong current compared to wave orbital motion, very oblique down-current oriented bars are obtained with a spacing of several times the surf zone width. When wave orbital motions are dominant, systems of up-current oriented bars and
crescentic/down-current oriented bars appear with spacings of the order of the surf zone width. The latter feature consists of alternating shoals and troughs at both sides of the break line with the inner shoals being bar-shaped and oblique to the coast. The growth (e-folding) time of the bars ranges from a few hours to a few days and it is favored by constant wave conditions. The range of model parameters leading to growth corresponds
to intermediate beach states in between the fully dissipative and the fully reflective situations. Preliminary comparison with field observations shows qualitative agreement.Peer ReviewedPostprint (published version
Climate change impact on beaches
En aquest Research Café es presenten projectes on la tecnologia es posa al servei dels mars i els oceans, i que estan lligats amb els objectius ODS Vida Submarina i Acció pel clima.Objectius de Desenvolupament Sostenible::13 - Acció per al ClimaObjectius de Desenvolupament Sostenible::14 - Vida Submarin
MORFO70: Un nuevo modelo numérico para estudiar la interacción entre patrones morfológicos en playas y la dinámica de la lÃnea de costa.
Peer ReviewedPostprint (published version
A new instability mechanism related to high-angle waves
Waves with a large incidence angle in deep water can drive a morphodynamic instability on a sandy coast whereby shoreline sand waves, cuspate forelands, and spits can emerge. This instability is related to bathymetric perturbations extending offshore in the shoaling zone. Here, we explore a different mechanism where the large incidence angle is supposed to occur at breaking and the bathymetric perturbations occur only in the surf zone. For wave incidence angles at breaking above ˜¿45°, the one-line approximation of coastal dynamics predicts an unstable shoreline. This instability (EHAWI) is scale-free and the growth rate increases without bound for decreasing wavelength. Here we use a 2DH morphodynamic model resolving surf zone instabilities to investigate whether EHAWI could approximate a real instability in nature with a characteristic length scale. Assuming very idealized conditions on the bathymetric profile and sediment transport, we find a 2DH instability mode consisting of shore-oblique up-current bars coupled to a meandering of the longshore current. This mode grows for high-angle waves, above about 30° (offshore) and the maximum growth rate occurs for the angle maximizing the angle at breaking, about 70° (offshore). The dominant wavelength is of the order of the surf zone width. Interestingly, for long sand waves, the growth rate never becomes negative and it matches very well the anti-diffusive behavior of EHAWI. This distinguishes the present instability mode from other modes found in previous studies for other bathymetric and sediment transport conditions. Thus, we conclude that EHAWI approximates a real morphodynamic instability only for quite particular conditions. In such case, a characteristic length scale of the instability emerges thanks to surf zone processes that damp short wavelengths.Postprint (author's final draft
Modelling long-term morphodynamic evolution of mega-nourishments
Peer ReviewedPostprint (published version
Rhythmic morphology in a microtidal low-energy beach
Observations of rythmic features along the inner side of the Trabucador barrier beach are coupled to two numerical models to unravel the mechanisms of its formation. The Trabucador is a long (6 Km) narrow (125 m) barrier and microtidal beach at the SW side of the Ebro delta (Catalonia). Its inner side is a low energy beach with a sandy shallow terrace featuring an intricate alongshore rhythmic morphology. Sixteen aerial orthophotos from 1946 to 2014 have been analyzed and complemented with field observations from 1986 to present. This morphology is dynamic but it is usually characterized by: a) long finger transverse bars (LFTB) and b) large scale shoreline undulations (LSSU). The LFTB are thin and elongated with a length of the order of their spacing. They are intertidal and typically attach to the shoreline by a megacusp, commonly opening an anti-clockwise angle of 10°–40° with the shore normal. There can be many, up to 90, with both the mean and the most frequent alongshore spacing in the range 15–25 m. Spectral analysis always shows peaks in this range and sometimes additional peaks in the range 30–65 m that correspond to the spacing between the largest bars with smaller bars in between. The LSSU typically have wavelengths in the range 150–250 m. Their apexes sometimes coincide with the shore attachment of the largest bars but not always. Numerical modelling shows that both features could emerge out of feedbacks between hydrodynamics and morphology during the SW wind events involving a) deflection of the longshore current by the bars combined with the refractive wave focusing and b) gradients in total alongshore sediment transport rate triggering the high-angle wave instability.Peer ReviewedPostprint (author's final draft
Nearshore sand bars
This research has been funded by the Spanish government through the research projects CTM2012-35398 (cofunded by FEDER, U.E.) and CTM2015-66225-C2-1-P (MINECO/FEDER).This review summarizes the morphological characteristics and dynamics of nearshore sand bars observed in the surf zone of sandy beaches worldwide, with length scales ranging from tens to hundreds of meters and time scales ranging from hours to weeks. They include shore-parallel bars (straight and crescentic) and transverse bars of different types. Furthermore, the present knowledge on the physical processes behind their formation and development is discussed.Peer ReviewedPostprint (published version
- …