120 research outputs found

    An experimental study to discriminate between the validity of diffraction theories for off-Bragg replay

    Full text link
    We show that experiments clearly verify the assumptions made by the first-order two-wave coupling theory for one dimensional lossless unslanted planar volume holographic gratings using the beta-value method rather than Kogelnik's K-vector closure method. Apart from the fact that the diffraction process is elastic, a much more striking difference between the theories becomes apparent particularly in the direction of the diffracted beam in off-Bragg replay. We therefore monitored the direction of the diffracted beam as a function of the off-Bragg replay angle in two distinct cases: [a] the diffracted beam lies in the plane of incidence and [b] the sample surface normal, the grating vector and the incoming beam do not form a plane which calls for the vectorial theory and results in conical scattering.Comment: Corrected Eqs. (3) & (6); 14 pages, 8 figure

    Mirrors for slow neutrons from holographic nanoparticle-polymer free-standing film-gratings

    Full text link
    We report on successful tests of holographically arranged grating-structures in nanoparticle-polymer composites in the form of 100 microns thin free-standing films, i.e. without sample containers or covers that could cause unwanted absorption/incoherent scattering of very-cold neutrons. Despite their large diameter of 2 cm, the flexible materials are of high optical quality and yield mirror-like reflectivity of about 90% for neutrons of 4.1 nm wavelength

    Monte-Carlo simulation of neutron transmission through nanocomposite materials for neutron-optics applications

    Full text link
    Nanocomposites enable us to tune parameters that are crucial for use of such materials for neutron-optics applications such as diffraction gratings by careful choice of properties such as species (isotope) and concentration of contained nanoparticles. Nanocomposites for neutron optics have so far successfully been deployed in protonated form, containing high amounts of 1^1H atoms, which exhibit rather strong neutron absorption and incoherent scattering. At a future stage of development, chemicals containing 1^1H could be replaced by components with more favourable isotopes, such as 2^2H or 19^{19}F. In this note, we present results of Monte-Carlo simulations of the transmissivity of various nanocomposite materials for thermal and very-cold neutron spectra. The results are compared to experimental transmission data. Our simulation results for deuterated and fluorinated nanocomposite materials predict a decrease of absorption- and scattering-losses down to about 2 % for very-cold neutrons.Comment: submitted to NIM

    Neutron optical beam splitter from holographically structured nanoparticle-polymer composites

    Full text link
    We report a breakthrough in the search for versatile diffractive elements for cold neutrons. Nanoparticles are spatially arranged by holographical means in a photopolymer. These grating structures show remarkably efficient diffraction of cold neutrons up to about 50% for effective thicknesses of only 200 micron. They open up a profound perspective for next generation neutron-optical devices with the capability to tune or modulate the neutron diffraction efficiency.Comment: 4 pages, 2 figure

    Water vapour line assignments in the 9250-26 000 cm (-1) frequency range

    Get PDF
    Line parameters for water vapour in natural abundance have recently been determined for the 9250-13 000 cm(-1) region [M.-F. Wrienne, A. Jenouvrier, C. Hermans, A.C. Vandaele, M. Carleer, C. Clerbaux, P.-F. Coheur, R. Colin, S. Fally, M. Bach, J. Quant. Spectrosc. Radiat. Transfer 82 (2003) 99] and the 13 000-26 000 cm(-1) region [P.-F. Coheur, S. Fally, M. Carleer, C. Clerbaux, R. Colin, A. Jenouvrier, M.-F. Wrienne, C. Hermans, A.C. Vandaele, J. Quant. Spectrosc. Radial. Transfer 74 (2002) 493] using a high-resolution Fourier-transform spectrometer with a long-path absorption cell. These spectra are analysed using several techniques including variational line lists and assignments made. In total, over 15 000 lines were assigned to transitions involving more than 150 exited vibrational states of (H2O)-O-16. Twelve new vibrational band origins are determined and estimates for a further 16 are presented. (c) 2005 Elsevier Inc. All rights reserved

    Improved water vapour spectroscopy in the 4174-4300 cm⁻¹ region and its impact on SCIAMACHY HDO/H₂O measurements

    Get PDF
    The relative abundance of the heavy water isotopologue HDO provides a deeper insight into the atmospheric hydrological cycle. The SCanning Imaging Absorption spectroMeter for Atmospheric CartograpHY (SCIAMACHY) allows for global retrievals of the ratio HDO/HO in the 2.3 micron wavelength range. However, the spectroscopy of water lines in this region remains a large source of uncertainty for these retrievals. We therefore evaluate and improve the water spectroscopy in the range 4174–4300 cm⁻¹ and test if this reduces systematic uncertainties in the SCIAMACHY retrievals of HDO/H₂O. We use a laboratory spectrum of water vapour to fit line intensity, air broadening and wavelength shift parameters. The improved spectroscopy is tested on a series of ground-based high resolution FTS spectra as well as on SCIAMACHY retrievals of H2O and the ratio HDO/H₂O. We find that the improved spectroscopy leads to lower residuals in the FTS spectra compared to HITRAN 2008 and Jenouvrier et al. (2007) spectroscopy, and the retrievals become more robust against changes in the retrieval window. For both the FTS and SCIAMACHY measurements, the retrieved total H₂O columns decrease by 2–4% and we find a negative shift of the HDO/H₂O ratio, which for SCIAMACHY is partly compensated by changes in the retrieval setup and calibration software. The updated SCIAMACHY HDO/H₂O product shows somewhat steeper latitudinal and temporal gradients and a steeper Rayleigh distillation curve, strengthening previous conclusions that current isotope-enabled general circulation models underestimate the variability in the near-surface HDO/H₂O ratio
    corecore