57 research outputs found

    Computer-assisted radiographic calculation of spinal curvature in brachycephalic "screw-Tailed" dog breeds with congenital thoracic vertebral malformations: reliability and clinical evaluation

    Get PDF
    The objectives of this study were: To investigate computer-assisted digital radiographic measurement of Cobb angles in dogs with congenital thoracic vertebral malformations, to determine its intra- and inter-observer reliability and its association with the presence of neurological deficits. Medical records were reviewed (2009–2013) to identify brachycephalic screw-tailed dog breeds with radiographic studies of the thoracic vertebral column and with at least one vertebral malformation present. Twenty-eight dogs were included in the study. The end vertebrae were defined as the cranial end plate of the vertebra cranial to the malformed vertebra and the caudal end plate of the vertebra caudal to the malformed vertebra. Three observers performed the measurements twice. Intraclass correlation coefficients were used to calculate the intra- and inter-observer reliabilities. The intraclass correlation coefficient was excellent for all intra- and inter-observer measurements using this method. There was a significant difference in the kyphotic Cobb angle between dogs with and without associated neurological deficits. The majority of dogs with neurological deficits had a kyphotic Cobb angle higher than 35°. No significant difference in the scoliotic Cobb angle was observed. We concluded that the computer assisted digital radiographic measurement of the Cobb angle for kyphosis and scoliosis is a valid, reproducible and reliable method to quantify the degree of spinal curvature in brachycephalic screw-tailed dog breeds with congenital thoracic vertebral malformations

    Ribose supplementation alone or with elevated creatine does not preserve high energy nucleotides or cardiac function in the failing mouse heart

    Get PDF
    Background: Reduced levels of creatine and total adenine nucleotides (sum of ATP, ADP and AMP) are hallmarks of chronic heart failure and restoring these pools is predicted to be beneficial by maintaining the diseased heart in a more favourable energy state. Ribose supplementation is thought to support both salvage and re-synthesis of adenine nucleotides by bypassing the rate-limiting step. We therefore tested whether ribose would be beneficial in chronic heart failure in control mice and in mice with elevated myocardial creatine due to overexpression of the creatine transporter (CrT-OE). Methods and Results: Four groups were studied: sham; myocardial infarction (MI); MI+ribose; MI+CrT-OE+ribose. In a pilot study, ribose given in drinking water was bioavailable, resulting in a two-fold increase in myocardial ribose-5-phosphate levels. However, 8 weeks post-surgery, total adenine nucleotide (TAN) pool was decreased to a similar amount (8–14%) in all infarcted groups irrespective of the treatment received. All infarcted groups also presented with a similar and substantial degree of left ventricular (LV) dysfunction (3-fold reduction in ejection fraction) and LV hypertrophy (32–47% increased mass). Ejection fraction closely correlated with infarct size independently of treatment (r2 = 0.63, p<0.0001), but did not correlate with myocardial creatine or TAN levels. Conclusion: Elevating myocardial ribose and creatine levels failed to maintain TAN pool or improve post-infarction LV remodeling and function. This suggests that ribose is not rate-limiting for purine nucleotide biosynthesis in the chronically failing mouse heart and that alternative strategies to preserve TAN pool should be investigated

    Myocardial creatine levels do not influence response to acute oxidative stress in isolated perfused heart

    Get PDF
    Background: Multiple studies suggest creatine mediates anti-oxidant activity in addition to its established role in cellular energy metabolism. The functional significance for the heart has yet to be established, but antioxidant activity could contribute to the cardioprotective effect of creatine in ischaemia/reperfusion injury. Objectives: To determine whether intracellular creatine levels influence responses to acute reactive oxygen species (ROS) exposure in the intact beating heart. We hypothesised that mice with elevated creatine due to over-expression of the creatine transporter (CrT-OE) would be relatively protected, while mice with creatine-deficiency (GAMT KO) would fare worse. Methods and Results: CrT-OE mice were pre-selected for creatine levels 20–100% above wild-type using in vivo 1 H– MRS. Hearts were perfused in isovolumic Langendorff mode and cardiac function monitored throughout. After 20 min equilibration, hearts were perfused with either H2O2 0.5 mM (30 min), or the anti-neoplastic drug doxorubicin 15 mM (100 min). Protein carbonylation, creatine kinase isoenzyme activities and phospho-PKCd expression were quantified in perfused hearts as markers of oxidative damage and apoptotic signalling. Wild-type hearts responded to ROS challenge with a profound decline in contractile function that was ameliorated by co-administration of catalase or dexrazoxane as positive controls. In contrast, the functional deterioration in CrT-OE and GAMT KO hearts was indistinguishable from wildtype controls, as was the extent of oxidative damage and apoptosis. Exogenous creatine supplementation also failed to protect hearts from doxorubicin-induced dysfunction. Conclusions: Intracellular creatine levels do not influence the response to acute ROS challenge in the intact beating heart, arguing against creatine exerting (patho-)physiologically relevant anti-oxidant activity

    A SCN9A variant in a family of mixed breed dogs with congenital insensitivity to pain

    Get PDF
    BACKGROUND Congenital insensitivity to pain (CIP) and hereditary sensory and autonomic neuropathies (HSANs) are a rare group of genetic disorders causing inability to feel pain. Three different associated variants have been identified in dogs: 1 in Border Collies, 1 in mixed breed dogs, and 1 in Spaniels and Pointers. OBJECTIVES To clinically and genetically characterize CIP in a family of mixed breed dogs. ANIMALS Two mixed breed dogs from the same litter were independently presented: 1 for evaluation of painless fractures, and the other for chronic thermal skin injuries. METHODS Physical, neurological, and histopathological evaluations were performed. Whole genome sequencing of 1 affected dog was used to identify homozygous protein-changing variants that were not present in 926 control genomes from diverse dog breeds. RESULTS Physical and neurological examinations showed the absence of superficial and deep pain perception in the entire body. Histopathological evaluations of the brain, spinal cord and sensory ganglia were normal. Whole genome sequencing identified a homozygous missense variant in SCN9A, XM_038584713.1:c.2761C>T or XP_038440641.1:(p.Arg921Cys). Both affected dogs were homozygous for the mutant allele, which was not detected in 926 dogs of different breeds. CONCLUSIONS AND CLINICAL IMPORTANCE We confirmed the diagnosis of CIP in a family of mixed breed dogs and identified a likely pathogenic variant in the SCN9A gene. The clinical signs observed in these dogs mimic those reported in humans with pathogenic SCN9A variants causing CIP. This report is the first of a spontaneous pathogenic SCN9A variant in domestic animals

    Refinement of analgesia following thoracotomy and experimental myocardial infarction using the Mouse Grimace Scale

    Get PDF
    New Findings What is the central question of this study? There is an ethical imperative to optimize analgesia protocols for laboratory animals, but this is impeded by our inability to recognize pain reliably. We examined whether the Mouse Grimace Scale (MGS) provides benefits over a standard welfare scoring system for identifying a low level of pain in the frequently used murine surgical model of myocardial infarction. What is the main finding and its importance? Low-level pain, responsive to analgesia, was detected by MGS but not standard methods. In this model, most of the pain is attributable to the thoracotomy, excepted in mice with very large infarcts. This approach represents a model for assessing postsurgical analgesia in rodents. The Mouse Grimace Scale (MGS) was developed for assessing pain severity, but the general applicability to complex postsurgical pain has not been established. We sought to determine whether the MGS provides benefits over and above a standard welfare scoring system for identifying pain in mice following experimental myocardial infarction. Female C57BL/6J mice (n = 60), anaesthetized with isoflurane, were subjected to thoracotomy with ligation of a coronary artery or sham procedure. A single s.c. dose of buprenorphine (1.1 mg kg−1) was given at the time of surgery and pain assessed at 24 h by MGS and a procedure-specific welfare scoring system. In some animals, a second dose of 0.6 mg kg−1 buprenorphine was given and pain assessment repeated after 30 min. The MGS was scored from multiple photographs by two independent blinded observers with good correlation (r = 0.98). Using the average MGS score of both observers, we identified a subset of mice with low scores that were not considered to be in pain by the welfare scoring system or by single observer MGS. These mice showed a significant improvement with additional analgesia, suggesting that this low-level pain is real. Pain attributable to the myocardial injury, as opposed to thoracotomy, persisted at 24 h only in mice with large infarcts >40%. In conclusion, the use of a multi-observer, post hoc version of the MGS is a sensitive tool to assess the efficacy of postsurgical analgesic protocols. Following surgical induction of myocardial infarction, we identified a significant proportion of mice that were in low-level pain at 24 h that were not identified by other assessment methods

    The Chihuahua dog: A new animal model for neuronal ceroid lipofuscinosis CLN7 disease?

    Get PDF
    Neuronal ceroid lipofuscinoses (NCLs) are a group of incurable lysosomal storage disorders characterized by neurodegeneration and accumulation of lipopigments mainly within the neurons. We studied two littermate Chihuahua dogs presenting with progressive signs of blindness, ataxia, pacing, and cognitive impairment from 1 year of age. Because of worsening of clinical signs, both dogs were euthanized at about 2 years of age. Postmortem examination revealed marked accumulation of autofluorescent intracellular inclusions within the brain, characteristic of NCL. Whole-genome sequencing was performed on one of the affected dogs. After sequence alignment and variant calling against the canine reference genome, variants were identified in the coding region or splicing regions of four previously known NCL genes (CLN6, ARSG, CLN2 [=TPP1], and CLN7 [=MFSD8]). Subsequent segregation analysis within the family (two affected dogs, both parents, and three relatives) identified MFSD8:p.Phe282Leufs13*, which had previously been identified in one Chinese crested dog with no available ancestries, as the causal mutation. Because of the similarities of the clinical signs and histopathological changes with the human form of the disease, we propose that the Chihuahua dog could be a good animal model of CLN7 disease

    Proof of concept and feasibility studies examining the influence of combination ribose, adenine and allopurinol treatment on stroke outcome in the rat

    Get PDF
    Background: Cerebral ischaemia results in a rapid and profound depletion of adenosine triphosphate (ATP), the energy currency of the cell. This depletion leads to disruption of cellular homeostasis and cell death. Early replenishment of ATP levels might therefore have a neuroprotective effect in the injured brain. We have previously shown that the ATP precursors, D-ribose and adenine (RibAde), restored the reduced ATP levels in rat brain slices to values similar to those measured in the intact rodent brain. The aim of this study was to assess whether RibAde, either alone or in combination with the xanthine oxidase inhibitor allopurinol (RibAdeAll; to further increase the availability of ATP precursors), could improve outcome in an in vivo rodent model of transient cerebral ischaemia. Methods: After 60 min occlusion of the middle cerebral artery, and upon reperfusion, rats were administered saline, RibAde, or RibAdeAll for 6 h. Baseline lesion volume was determined by diffusion-weighted MRI prior to reperfusion and final infarct volume determined by T2-weighted MRI at Day 7. Neurological function was assessed at Days 1, 3 and 7. Results: Ischaemic lesion volume decreased between Days 1 and 7: a 50% reduction was observed for the RibAdeAll group, 38% for the RibAde group and 18% in the animals that received saline. Reductions in lesion size in treatment groups were accompanied by a trend for faster functional recovery. Conclusion: These data support the potential use of ribose, adenine and allopurinol in the treatment of cerebral ischaemic injury, especially since all compounds have been used in man
    • …
    corecore