3 research outputs found
High resolution imaging with Fresnel interferometric arrays: suitability for exoplanet detection
We propose a new kind of interferometric array that yields images of high
dynamic range and large field. The numerous individual apertures in this array
form a pattern related to a Fresnel zone plate. This array can be used for
astrophysical imaging over a broad spectral bandwidth spanning from the U.V.
(50 nanometers) to the I.R. (20 microns). Due to the long focal lengths
involved, this instrument requires formation-flying of two space borne vessels.
We present the concept and study the S/N ratio in different situations, then
apply these results to probe the suitability of this concept to detect
exoplanets.Comment: 12 pages, 19 figures, to be published in A&
The Fresnel interferometric imager
International audienceThe Fresnel interferometric imager is a new kind of high angular resolution space instrument for the UV domain, and the related astrophysical targets. This optical concept is meant to allow larger and lighter apertures in space than solid state optics. It yields high dynamic range images and same resolution as that of a solid aperture of the same size. The long focal lengths of the Fresnel imager (a few kilometers) require operation by two-vessel formation flying in space. The first vessel holds a large and thin opaque foil punched with thousands of holes: the interferometric array, the second vessel holds the focal instrumentation. This Fresnel imager has been designed for mapping high contrast stellar environments: dust disks, close companions and (we hope) exoplanets. Compact objects such as large stellar photospheres may be imaged with array sizes of a few meters in the UV. Larger and more complex fields can also be imaged, although with a lesser dynamic range, such as small fields on galactic clouds or extragalactic fields, or in an other domain: small solar system bodies. We present the first images obtained on artificial sources with an 8 cm laboratory testbed array having 26680 apertures, the measured dynamic range of these images and their diffraction limited angular resolution. A 3 m class probatory space mission will be studied and follow a validation path, It has been submitted as a proposal to the ESA Cosmic Vision program