9 research outputs found

    Isolation of non-tuberculous mycobacteria from pastoral ecosystems of Uganda: Public Health significance

    Get PDF
    <p>Abstract</p> <p>Background</p> <p>The importance of non-tuberculous mycobacteria (NTM) infections in humans and animals in sub-Saharan Africa at the human-environment-livestock-wildlife interface has recently received increased attention. NTM are environmental opportunistic pathogens of humans and animals. Recent studies in pastoral ecosystems of Uganda detected NTM in humans with cervical lymphadenitis and cattle with lesions compatible with bovine tuberculosis. However, little is known about the source of these mycobacteria in Uganda. The aim of this study was to isolate and identify NTM in the environment of pastoral communities in Uganda, as well as assess the potential risk factors and the public health significance of NTM in these ecosystems.</p> <p>Method</p> <p>A total of 310 samples (soil, water and faecal from cattle and pigs) were examined for mycobacteria. Isolates were identified by the INNO-Lipa test and by 16S rDNA sequencing. Additionally, a questionnaire survey involving 231 pastoralists was conducted during sample collection. Data were analysed using descriptive statistics followed by a multivariable logistic regression analysis.</p> <p>Results</p> <p>Forty-eight isolates of NTM were detected; 25.3% of soil samples, 11.8% of water and 9.1% from animal faecal samples contained mycobacteria. Soils around water sources were the most contaminated with NTM (29.8%). Of these samples, <it>M. fortuitum-peregrinum </it>complex, <it>M. avium </it>complex, <it>M. gordonae</it>, and <it>M. nonchromogenicum </it>were the most frequently detected mycobacteria. Drinking untreated compared to treated water (OR = 33), use of valley dam versus stream water for drinking and other domestic use (OR = 20), sharing of water sources with wild primates compared to antelopes (OR = 4.6), sharing of water sources with domestic animals (OR = 5.3), and close contact with cattle or other domestic animals (OR = 13.8) were the most plausible risk factors for humans to come in contact with NTM in the environment.</p> <p>Conclusions</p> <p>The study detected a wide range of potentially pathogenic NTM from the environment around the pastoral communities in Uganda. Drinking untreated water and living in close contact with cattle or other domestic animals may be risk factors associated with the possibility of humans and animals acquiring NTM infections from these ecosystems.</p

    Decolorization of Malachite Green and Crystal Violet by Waterborne Pathogenic Mycobacteria

    No full text
    Mycobacterium avium, Mycobacterium intracellulare, Mycobacterium scrofulaceum, Mycobacterium marinum, and Mycobacterium chelonae tolerate high concentrations of the dyes malachite green and crystal violet. Cells of strains of those species decolorized (reduced) both malachite green and crystal violet. Because decolorized malachite green lacked antimicrobial activity, the resistance of these mycobacteria could be due, in part, to their ability to decolorize the dyes. Small amounts of malachite green and its reduced, decolorized product were detected in the lipid fraction of M. avium strain A5 cells grown in the presence of malachite green, suggesting that a minor component of resistance could be due to sequestering the dyes in the extensive mycobacterial cell surface lipid. The membrane fraction of M. avium strain A5 had at least a fivefold-higher specific decolorization rate than did the crude extract, suggesting that the decolorization activity is membrane associated. The malachite green-decolorizing activity of the membrane fraction of M. avium strain A5 was abolished by either boiling or proteinase exposure, suggesting that the decolorizing activity was due to a protein. Decolorization activity of membrane fractions was stimulated by ferrous ion and inhibited by dinitrophenol and metyrapone

    RESEARCH Nontuberculous Mycobacteria in Household Plumbing as Possible Cause of Chronic Rhinosinusitis

    Get PDF
    Symptoms of chronic rhinosinusitis (CRS) often persist despite treatment. Because nontuberculous mycobacteria (NTM) are resistant to commonly used antimicrobial drugs and are found in drinking water that patients may use for sinus irrigation, we investigated whether some CRS patients were infected with NTM in New York, New York, USA, during 2001–2011. Two approaches were chosen: 1) records of NTM-infected CRS patients were reviewed to identify common features of infection and Mycobacterium species; 2) samples from plumbing in households of 8 NTM-infected patients were cultured for NTM presence. In 3 households sampled, M. avium sharing rep-PCR and pulsed fi eld gel electrophoresis fi ngerprints identifi ed M. avium isolates clonally related to the patients ’ isolates. We conclude that patients with treatment-resistant CRS may be infected with NTM and should have cultures performed for NTM so appropriate therapy can be instituted. In addition, the results suggest that CRS patients can be infected by NTM in their household plumbing. subset of patients with chronic rhinosinusitis A (CRS) often experience persistent symptoms, despite undergoing many medical and surgical modes of treatment. Current theories regarding the cause of CRS include immunologic reactions to microorganisms (1,2). Even though they receive various treatments, including antimicrobial drugs and sinus irrigation, many patients continue to be symptomatic (2). One possible reason for th

    Synergistic Antimicrobial Activity of Metabolites Produced by a Nonobligate Bacterial Predator

    Get PDF
    A naturally occurring, gram-negative, nonobligate predator bacterial strain 679-2, exhibits broad-spectrum antimicrobial activity that is due, in part, to the production of three extracellular compounds. Antimicrobial-activity-directed fractionation of a culture of strain 679-2 against a panel of microorganisms has led to the isolation of three compounds: pyrrolnitrin, maculosin, and a new compound, which we have named banegasine. Although pyrrolnitrin is well known in the literature, it has not been found in cells with the herbicide maculosin. Further, this is the first report of production of maculosin by a prokaryote. Both maculosin and banegasine, which displayed no antimicrobial activities alone, were found to potentiate the antimicrobial activity of pyrrolnitrin. Based on 16S rRNA sequence, cellular fatty acid composition, and biochemical and cultural characteristics, strain 679-2 appears to represent a new genus and species of eubacteria, Aristabacter necator. The potent, broad-spectrum antimicrobial activity of predator strain 679-2 may be due to synergism between metabolites

    Probiotic Approach to Pathogen Control in Premise Plumbing Systems? A Review

    No full text
    corecore