1,674 research outputs found

    Spectra of Baryons Containing Two Heavy Quarks in Potential Model

    Get PDF
    In this work, we employ the effective vertices for interaction between diquarks (scalar or axial-vector) and gluon where the form factors are derived in terms of the B-S equation, to obtain the potential for baryons including a light quark and a heavy diquark. The concerned phenomenological parameters are obtained by fitting data of B()B^{(*)}-mesons instead of the heavy quarkonia. The operator ordering problem in quantum mechanics is discussed. Our numerical results indicate that the mass splitting between B3/2(V),B1/2(V)B_{3/2}(V), B_{1/2}(V) and B1/2(S)B_{1/2}(S) is very small and it is consistent with the heavy quark effective theory (HQET).Comment: 16 page

    Binary Reactive Adsorbate on a Random Catalytic Substrate

    Full text link
    We study the equilibrium properties of a model for a binary mixture of catalytically-reactive monomers adsorbed on a two-dimensional substrate decorated by randomly placed catalytic bonds. The interacting AA and BB monomer species undergo continuous exchanges with particle reservoirs and react (A+BA + B \to \emptyset) as soon as a pair of unlike particles appears on sites connected by a catalytic bond. For the case of annealed disorder in the placement of the catalytic bonds this model can be mapped onto a classical spin model with spin values S=1,0,+1S = -1,0,+1, with effective couplings dependent on the temperature and on the mean density qq of catalytic bonds. This allows us to exploit the mean-field theory developed for the latter to determine the phase diagram as a function of qq in the (symmetric) case in which the chemical potentials of the particle reservoirs, as well as the AAA-A and BBB-B interactions are equal.Comment: 12 pages, 4 figure

    NuGrid: Toward High Precision Double-Degenerate Merger Simulations with SPH in 3D

    Get PDF
    We present preliminary results from recent high-resolution double-degenerate merger simulations with the Smooth Particle Hydrodynamics (SPH) technique. We put particular emphasis on verification and validation in our effort and show the importance of details in the initial condition setup for the final outcome of the simulation. We also stress the dynamical importance of including shocks in the simulations. These results represent a first step toward a suite of simulations that will shed light on the question whether double-degenerate mergers are a viable path toward type 1a supernovae. In future simulations, we will make use of the capabilities of the NuGrid collaboration in post-processing SPH particle trajectories with a complete nuclear network to follow the detailed nuclear reactions during the dynamic merger phase.Comment: To appear in the Conference Proceedings for the "10th Symposium on Nuclei in the Cosmos (NIC X)", July 27 - August 1 2008, Mackinack Island, Michigan, US

    Anomalous acoustic reflection on a sliding interface or a shear band

    Full text link
    We study the reflection of an acoustic plane wave from a steadily sliding planar interface with velocity strengthening friction or a shear band in a confined granular medium. The corresponding acoustic impedance is utterly different from that of the static interface. In particular, the system being open, the energy of an in-plane polarized wave is no longer conserved, the work of the external pulling force being partitioned between frictional dissipation and gain (of either sign) of coherent acoustic energy. Large values of the friction coefficient favor energy gain, while velocity strengthening tends to suppress it. An interface with infinite elastic contrast (one rigid medium) and V-independent (Coulomb) friction exhibits spontaneous acoustic emission, as already shown by M. Nosonovsky and G.G. Adams (Int. J. Ing. Sci., {\bf 39}, 1257 (2001)). But this pathology is cured by any finite elastic contrast, or by a moderately large V-strengthening of friction. We show that (i) positive gain should be observable for rough-on-flat multicontact interfaces (ii) a sliding shear band in a granular medium should give rise to sizeable reflection, which opens a promising possibility for the detection of shear localization.Comment: 13 pages, 10 figure

    Application of heavy-quark effective theory to lattice QCD: I. Power Corrections

    Full text link
    Heavy-quark effective theory (HQET) is applied to lattice QCD with Wilson fermions at fixed lattice spacing a. This description is possible because heavy-quark symmetries are respected. It is desirable because the ultraviolet cutoff 1/a1/a in current numerical work and the heavy-quark mass mQm_Q are comparable. Effects of both short distances, a and 1/mQ1/m_Q, are captured fully into coefficient functions, which multiply the operators of the usual HQET. Standard tools of HQET are used to develop heavy-quark expansions of lattice observables and, thus, to propagate heavy-quark discretization errors. Three explicit examples are given: namely, the mass, decay constant, and semileptonic form factors of heavy-light mesons.Comment: 41 pp., no figs; Phys Rev D version, improving argument that an HQET holds for all m_Q

    Quenched Chiral Perturbation Theory for Vector Mesons

    Get PDF
    We develop quenched chiral perturbation theory for vector mesons made of light quarks, in the limit where the vector meson masses are much larger than the pion mass. We use this theory to extract the leading nonanalytic dependence of the vector meson masses on the masses of the light quarks. By comparing with analogous quantities computed in ordinary chiral perturbation theory, we estimate the size of quenching effects, observing that in general they can be quite large. This estimate is relevant to lattice simulations, where the ρ\rho mass is often used to set the lattice spacing.Comment: 18 pages, 8 figures, uses REVTeX and epsf.st

    Final State Interactions in D0K0K0ˉD^0 \to K^0 \bar{K^0}

    Full text link
    It is believed that the production rate of D0K0Kˉ0D^0\to K^0\bar K^0 is almost solely determined by final state interactions (FSI) and hence provides an ideal place to test FSI models. Here we examine model calculations of the contributions from s-channel resonance fJ(1710)f_J(1710) and t-channel exchange to the FSI effects in D0K0Kˉ0D^0\to K^0\bar K^0. The contribution from s-channel f0(1710)f_0(1710) is smaForthetchannelFSIevaluation,weemploytheoneparticleexchange(OPE)modelandReggemodelrespecti For the t-channel FSI evaluation, we employ the one-particle-exchange (OPE) model and Regge model respecti The results from two methods are roughly consistent with each other and can reproduce the large rate of D0K0Kˉ0D^0\to K^0\bar K^0 reasonably well$Comment: Latex, 16 pages, with 2 figure

    Spin Dependent Fragmentation Functions for Heavy Flavor Baryons and Single Heavy Hyperon Polarization

    Get PDF
    Spin dependent fragmentation functions for heavy flavor quarks to fragment into heavy baryons are calculated in a quark-diquark model. The production of intermediate spin 1/2 and 3/2 excited states is explicity included. Λb\Lambda_b , Λc\Lambda_c and Ξc\Xi_c production rate and polarization at LEP energies are calculated and, where possible, compared with experiment. A different approach, also relying on a heavy quark-diquark model, is proposed for the small momentum transfer inclusive production of polarized heavy flavor hyperons. The predicted Λc\Lambda_c polarization is roughly in agreement with experiment.Comment: LaTeX2e 11 pages with 4 PostScript figures. To be published in Proceedings of the International Workshop ``Symmetries and spin'', Praha-SPIN-200

    Phenomenological Consequences of Right-handed Down Squark Mixings

    Get PDF
    The mixings of dRd_R quarks, hidden from view in Standard Model (SM), are naturally the largest if one has an Abelian flavor symmetry. With supersymmetry (SUSY) their effects can surface via d~R\tilde d_R squark loops. Squark and gluino masses are at TeV scale, but they can still induce effects comparable to SM in BdB_d (or BsB_s) mixings, while D0D^0 mixing could be close to recent hints from data. In general, CP phases would be different from SM, as may be indicated by recent B Factory data. Presence of non-standard soft SUSY breakings with large tanβ\tan\beta could enhance bdγb\to d\gamma (or sγs\gamma) transitions.Comment: Version to appear in Phys. Rev. Let

    Lattice QCD calculation of BˉDlνˉ\bar{B}\to Dl\bar{\nu} decay form factors at zero recoil

    Full text link
    A lattice QCD calculation of the BˉDlνˉ\bar{B}\to Dl\bar{\nu} decay form factors is presented. We obtain the value of the form factor h+(w)h_+(w) at the zero-recoil limit w=1w=1 with high precision by considering a ratio of correlation functions in which the bulk of the uncertainties cancels. The other form factor h(w)h_-(w) is calculated, for small recoil momenta, from a similar ratio. In both cases, the heavy quark mass dependence is observed through direct calculations with several combinations of initial and final heavy quark masses. Our results are h+(1)=1.007(6)(2)(3)h_+(1) = 1.007(6)(2)(3) and h(1)=0.107(28)(04)(3010)h_-(1)=-0.107(28)(04)(^{10}_{30}). For both the first error is statistical, the second stems from the uncertainty in adjusting the heavy quark masses, and the last from omitted radiative corrections. Combining these results, we obtain a precise determination of the physical combination FBD(1)=1.058(1720)F_{B\to D}(1)=1.058(^{20}_{17}), where the mentioned systematic errors are added in quadrature. The dependence on lattice spacing and the effect of quenching are not yet included, but with our method they should be a fraction of FBD1F_{B\to D}-1.Comment: 32 pp, 10 figs; final, published versio
    corecore