8,888 research outputs found

    Rate dependent shear bands in a shear transformation zone model of amorphous solids

    Full text link
    We use Shear Transformation Zone (STZ) theory to develop a deformation map for amorphous solids as a function of the imposed shear rate and initial material preparation. The STZ formulation incorporates recent simulation results [Haxton and Liu, PRL 99 195701 (2007)] showing that the steady state effective temperature is rate dependent. The resulting model predicts a wide range of deformation behavior as a function of the initial conditions, including homogeneous deformation, broad shear bands, extremely thin shear bands, and the onset of material failure. In particular, the STZ model predicts homogeneous deformation for shorter quench times and lower strain rates, and inhomogeneous deformation for longer quench times and higher strain rates. The location of the transition between homogeneous and inhomogeneous flow on the deformation map is determined in part by the steady state effective temperature, which is likely material dependent. This model also suggests that material failure occurs due to a runaway feedback between shear heating and the local disorder, and provides an explanation for the thickness of shear bands near the onset of material failure. We find that this model, which resolves dynamics within a sheared material interface, predicts that the stress weakens with strain much more rapidly than a similar model which uses a single state variable to specify internal dynamics on the interface.Comment: 10 pages, 13 figures, corrected typos, added section on rate strengthening vs. rate weakening material

    Spin Coherence During Optical Excitation of a Single NV Center in Diamond

    Full text link
    We examine the quantum spin state of a single nitrogen-vacancy (NV) center in diamond at room temperature as it makes a transition from the orbital ground-state (GS) to the orbital excited-state (ES) during non-resonant optical excitation. While the fluorescence read-out of NV-center spins relies on conservation of the longitudinal spin projection during optical excitation, the question of quantum phase preservation has not been examined. Using Ramsey measurements and quantum process tomography, we establish limits on NV center spin decoherence induced during optical excitation. Treating the optical excitation and ES spin precession as a quantum process, we measure a process fidelity of F=0.87\pm0.03, which includes ES spin dephasing during measurement. Extrapolation to the moment of optical excitation yields F\approx0.95. This result demonstrates that ES spin interactions may be used as a resource for quantum control because the quantum spin state can survive incoherent orbital transitions.Comment: 12 pages, 3 figure

    Excited Heavy Mesons Beyond Leading Order in the Heavy Quark Expansion

    Get PDF
    We examine the decays of excited heavy mesons, including the leading power corrections to the heavy quark limit. We find a new and natural explanation for the large deviation of the width of the D1(2420)D_1(2420) from the heavy quark symmetry prediction. Our formalism leads to detailed predictions for the properties of the excited bottom mesons, some of which recently have been observed. Finally, we present a detailed analysis of the effect of power corrections and finite meson widths on the angular distributions which may be measured in heavy meson decays.Comment: Uses REVTeX, 19 pages, 6 EPS figures embedded with epsf.st

    Dynamics of Large-Scale Plastic Deformation and the Necking Instability in Amorphous Solids

    Full text link
    We use the shear transformation zone (STZ) theory of dynamic plasticity to study the necking instability in a two-dimensional strip of amorphous solid. Our Eulerian description of large-scale deformation allows us to follow the instability far into the nonlinear regime. We find a strong rate dependence; the higher the applied strain rate, the further the strip extends before the onset of instability. The material hardens outside the necking region, but the description of plastic flow within the neck is distinctly different from that of conventional time-independent theories of plasticity.Comment: 4 pages, 3 figures (eps), revtex4, added references, changed and added content, resubmitted to PR

    Higher Order 1/m1/m Corrections at Zero Recoil

    Full text link
    The general structure of the 1/m1/m corrections at zero recoil is studied. The relevant matrix elements are forward matrix elements of local higher dimensional operators and their time ordered products with higher order terms from the Lagrangian. These matrix elements may be classified in a simple way and the analysis at the non recoil point for the form factor of heavy quark currents simplifies drastically. The second order recoil corrections to the form factor hA1h_{A1} of the axial vector current, relevant for the Vcb|V_{cb}| determination from BDB \to D^* decays, are estimated to be 5%<hA11<0-5\% < h_{A1} - 1 < 0.Comment: LaTeX, 25 pages, one figure, appended after \end{document} as uu-encoded and compressed eps file, uses epsf, CERN-TH.7162/9

    Binary Reactive Adsorbate on a Random Catalytic Substrate

    Full text link
    We study the equilibrium properties of a model for a binary mixture of catalytically-reactive monomers adsorbed on a two-dimensional substrate decorated by randomly placed catalytic bonds. The interacting AA and BB monomer species undergo continuous exchanges with particle reservoirs and react (A+BA + B \to \emptyset) as soon as a pair of unlike particles appears on sites connected by a catalytic bond. For the case of annealed disorder in the placement of the catalytic bonds this model can be mapped onto a classical spin model with spin values S=1,0,+1S = -1,0,+1, with effective couplings dependent on the temperature and on the mean density qq of catalytic bonds. This allows us to exploit the mean-field theory developed for the latter to determine the phase diagram as a function of qq in the (symmetric) case in which the chemical potentials of the particle reservoirs, as well as the AAA-A and BBB-B interactions are equal.Comment: 12 pages, 4 figure

    Radiative Leptonic Decays of Heavy Mesons

    Get PDF
    We compute the photon spectrum and the rate for the decays B(D)lνlγB(D)\to l\nu_l\gamma These photonic modes constitute a potentially large background for the purely leptonic decays which are used to extract the heavy meson decay constants. While the rate for D\to l\n\g is small, the radiative decay in the BB meson case could be of comparable magnitude or even larger than B\to\m\n. This would affect the determination of fBf_B if the τ\tau channel cannot be identified. We obtain theoretical estimates for the photonic rates and disscuss their possible experimental implications.Comment: 12 pages, RevTex, 3 uuencoded figures include

    More on Symmetries in Heavy Quark Effective Theory

    Full text link
    We present a general classification of all normal and ``chiral" symmetries of heavy quark effective theories. Some peculiarities and conondrums associated with the ``chiral" symmetries are discussed.Comment: 15 pages, preprint UR-1320, ER40685-77

    J/Psi Production from Electromagnetic Fragmentation in Z decay

    Full text link
    The rate for Z0J/ψ++ Z^{0}\to J/ \psi + \ell^{+}\ell^{-} is suprisingly large with about one event for every million Z0Z^{0} decays. The reason for this is that there is a fragmentation contribution that is not suppressed by a factor of Mψ2/MZ2M^{2}_{\psi}/M^{2}_{Z}. In the fragmentation limit MZ M_{Z}\to\infty with Eψ/MZE_{\psi}/M_{Z} fixed, the differential decay rate for Z0J/ψ++ Z^{0}\to J/ \psi + \ell^{+}\ell^{-} factors into electromagnetic decay rates and universal fragmentation functions. The fragmentation functions for lepton fragmentation and photon fragmentation into J/ψJ/\psi are calculated to lowest order in α\alpha. The fragmentation approximation to the rate is shown to match the full calculation for EψE_{\psi} greater than about 3Mψ3 M_{\psi}.Comment: 16 pages and 8 figure

    Crack fronts and damage in glass at the nanometer scale

    Full text link
    We have studied the low speed fracture regime for different glassy materials with variable but controlled length scales of heterogeneity in a carefully mastered surrounding atmosphere. By using optical and atomic force microscopy (AFM) techniques we tracked in real-time the crack tip propagation at the nanometer scale on a wide velocity range (mm/s - pm/s and below). The influence of the heterogeneities on this velocity is presented and discussed. Our experiments reveal also -for the first time- that the crack progresses through nucleation, growth and coalescence of nanometric damage cavities within the amorphous phase. This may explain the large fluctuations observed in the crack tip velocities for the smallest values. This behaviour is very similar to what is involved, at the micrometric scale, in ductile fracture. The only difference is very likely due to the related length scales (nanometric instead of micrometric). Consequences of such a nano-ductile fracture mode observed at a temperature far below the glass transition temperature in glass is finally discussed.Comment: 12 pages, 8 figures, submitted to Journal of Physics: Condensed Matter; Invited talk at Glass and Optical Materials Division Fall 2002 Meeting, Pittsburgh, Pa, US
    corecore