39 research outputs found

    Universal fluctuations in subdiffusive transport

    Get PDF
    Subdiffusive transport in tilted washboard potentials is studied within the fractional Fokker-Planck equation approach, using the associated continuous time random walk (CTRW) framework. The scaled subvelocity is shown to obey a universal law, assuming the form of a stationary Levy-stable distribution. The latter is defined by the index of subdiffusion alpha and the mean subvelocity only, but interestingly depends neither on the bias strength nor on the specific form of the potential. These scaled, universal subvelocity fluctuations emerge due to the weak ergodicity breaking and are vanishing in the limit of normal diffusion. The results of the analytical heuristic theory are corroborated by Monte Carlo simulations of the underlying CTRW

    An Observational Overview of Solar Flares

    Full text link
    We present an overview of solar flares and associated phenomena, drawing upon a wide range of observational data primarily from the RHESSI era. Following an introductory discussion and overview of the status of observational capabilities, the article is split into topical sections which deal with different areas of flare phenomena (footpoints and ribbons, coronal sources, relationship to coronal mass ejections) and their interconnections. We also discuss flare soft X-ray spectroscopy and the energetics of the process. The emphasis is to describe the observations from multiple points of view, while bearing in mind the models that link them to each other and to theory. The present theoretical and observational understanding of solar flares is far from complete, so we conclude with a brief discussion of models, and a list of missing but important observations.Comment: This is an article for a monograph on the physics of solar flares, inspired by RHESSI observations. The individual articles are to appear in Space Science Reviews (2011

    Observations of the Sun at Vacuum-Ultraviolet Wavelengths from Space. Part II: Results and Interpretations

    Full text link

    Theory of Minimum Mean‐Square‐Error QAM Systems Employing Decision Feedback Equalization

    No full text
    Decision feedback equalization is presently of interest as a technique for reducing intersymbol interference in high‐rate PAM data communications systems. The basic principle is to cancel out intersymbol interference arising from previously decided data symbols at the receiver, leaving remaining intersymbol interference components to be handled by linear equalization. In this work we consider the application of decision feedback equalization to quadrature‐amplitude modulation (QAM) transmission, in which two independent information streams modulate quadrature carriers. Extending Salz's treatment in a companion paper of decision feedback for a baseband channel, we derive the form of the optimum receiver filters via a matrix Wiener‐Hopf analysis. We obtain explicit analytical expressions for minimum mean‐square error and optimum transmitting filters. The optimization is subject to a constraint on the transmitted signal power and assumes no prior decision errors. The class of QAM transmitter and receiver structures treated here is actually much larger than the class usually considered for QAM systems. However, our results for decision feedback equalization show that, for nonexcess bandwidth systems, optimum performance is achievable without taking advantage of the most general structure. If the transmitter is required to have the conventional QAM structure, study of the time continuous system that gives rise to the sampled data system considered here demonstrates that under quite general assumptions a nonexcess bandwidth system is optimum. Finally, the explicit description of the optimum transmitting matrix filter follows from an information‐theoretic “water‐pouring” algorithm in conjunction with the determination of the form of the points of maxima of a determinant extremal problem
    corecore