2,800 research outputs found
Verifying Policy Enforcers
Policy enforcers are sophisticated runtime components that can prevent
failures by enforcing the correct behavior of the software. While a single
enforcer can be easily designed focusing only on the behavior of the
application that must be monitored, the effect of multiple enforcers that
enforce different policies might be hard to predict. So far, mechanisms to
resolve interferences between enforcers have been based on priority mechanisms
and heuristics. Although these methods provide a mechanism to take decisions
when multiple enforcers try to affect the execution at a same time, they do not
guarantee the lack of interference on the global behavior of the system. In
this paper we present a verification strategy that can be exploited to discover
interferences between sets of enforcers and thus safely identify a-priori the
enforcers that can co-exist at run-time. In our evaluation, we experimented our
verification method with several policy enforcers for Android and discovered
some incompatibilities.Comment: Oliviero Riganelli, Daniela Micucci, Leonardo Mariani, and Yli\`es
Falcone. Verifying Policy Enforcers. Proceedings of 17th International
Conference on Runtime Verification (RV), 2017. (to appear
Analysis of Energy Consumption Performance towards Optimal Radioplanning of Wireless Sensor Networks in Heterogeneous Indoor Environments
In this paper the impact of complex indoor environment in the deployment and energy consumption of a wireless sensor network infrastructure is analyzed. The variable nature of the radio channel is analyzed by means of deterministic in-house 3D ray launching simulation of an indoor scenario, in which wireless sensors, based on an in-house CyFi implementation, typically used for environmental monitoring, are located. Received signal power and current consumption measurement results of the in-house designed wireless motes have been obtained, stating that adequate consideration of the network topology and morphology lead to optimal performance and power consumption reduction. The use of radioplanning techniques therefore aid in the deployment of more energy efficient elements, optimizing the overall performance of the variety of deployed wireless systems within the indoor scenario
X-Ray Spectral Variability of Extreme BL Lac AGN H1426+428
Between 7 March 2002 and 15 June 2002, intensive X-ray observations were
carried out on the extreme BL Lac object H1426+428 with instruments on board
the Rossi X-ray Timing Explorer (RXTE). These instruments provide measurements
of H1426+428 in the crucial energy range that characterizes the first peak of
its spectral energy distribution. This peak, which is almost certainly due to
synchrotron emission, has previously been inferred to be in excess of 100 keV.
By taking frequent observations over a four-month campaign, which included
450 ksec of RXTE time, studies of flux and spectral variability on
multiple timescales were performed, along with studies of spectral hysteresis.
The 3-24 keV X-ray flux and spectra exhibited significant variability, implying
variability in the location of the first peak of the spectral energy
distribution. Hysteresis patterns were observed, and their characteristics have
been discussed within the context of emission models.Comment: accepted for publication in Astrophysical Journa
Neutrinoless double beta decay in SO(10) inspired seesaw models
By requiring the lower limit for the lightest right-handed neutrino mass,
obtained in the baryogenesis from leptogenesis scenario, and a Dirac neutrino
mass matrix similar to the up-quark mass matrix we predict small values for the
mass and for the matrix element responsible of the
neutrinoless double beta decay, around eV and
smaller than eV, respectively. The allowed range for the
mass of the heaviest right-handed neutrino is centered around the value of the
scale of B - L breaking in the SO(10) gauge theory with Pati-Salam intermediate
symmetry.Comment: 9 pages, RevTex4. Revised, title change
MicroRNA-222 regulates muscle alternative splicing through Rbm24 during differentiation of skeletal muscle cells
A number of microRNAs have been shown to regulate skeletal muscle development and differentiation. MicroRNA-222 is downregulated during myogenic differentiation and its overexpression leads to alteration of muscle differentiation process and specialized structures. By using RNA-induced silencing complex (RISC) pulldown followed by RNA sequencing, combined with in silico microRNA target prediction, we have identified two new targets of microRNA-222 involved in the regulation of myogenic differentiation, Ahnak and Rbm24. Specifically, the RNA-binding protein Rbm24 is a major regulator of muscle-specific alternative splicing and its downregulation by microRNA-222 results in defective exon inclusion impairing the production of muscle-specific isoforms of Coro6, Fxr1 and NACA transcripts. Reconstitution of normal levels of Rbm24 in cells overexpressing microRNA-222 rescues muscle-specific splicing. In conclusion, we have identified a new function of microRNA-222 leading to alteration of myogenic differentiation at the level of alternative splicing, and we provide evidence that this effect is mediated by Rbm24 protei
Fermion masses and mixings in gauge theories
The recent evidence for neutrino oscillations stimulate us to discuss again
the problem of fermion masses and mixings in gauge theories. In the standard
model, several forms for quark mass matrices are equivalent. They become
ansatze within most extensions of the standard model, where also relations
between quark and lepton sectors may hold. In a seesaw framework, these
relations can constrain the scale of heavy neutrino mass, which is often
related to the scale of intermediate or unification gauge symmetry. As a
consequence, two main scenarios arise. Hierarchies of masses and mixings may be
explained by broken horizontal symmetries.Comment: 25 pages, RevTex, no figures. Few misprints corrected and two
references adde
Triangular Textures for Quark Mass Matrices
The hierarchical quark masses and small mixing angles are shown to lead to a
simple triangular form for the U- and D-type quark mass matrices. In the basis
where one of the matrices is diagonal, each matrix element of the other is, to
a good approximation, the product of a quark mass and a CKM matrix element. The
physical content of a general mass matrix can be easily deciphered in its
triangular form. This parameterization could serve as a useful starting point
for model building. Examples of mass textures are analyzed using this method.Comment: 10 pages, no figure
Meson Correlation Function and Screening Mass in Thermal QCD
Analytical results for the spatial dependence of the correlation functions
for all meson excitations in perturbative Quantum Chromodynamics, the lowest
order, are calculated. The meson screening mass is obtained as a large distance
limit of the correlation function. Our analysis leads to a better understanding
of the excitations of Quark Gluon Plasma at sufficiently large temperatures and
may be of relevance for future numerical calculations with fully interacting
Quantum Chromodynamics.Comment: 11 page
Gamma-Ray Burst long lasting X-ray flaring activity
In this paper we shed light on late time (i.e. with peak time t_{pk} \gtrsim
1000 s) flaring activity. We address the morphology and energetic of flares in
the window \sim 10^3-10^6 s to put constraints on the temporal evolution of the
flare properties and to identify possible differences in the mechanism
producing the early and late time flaring emission, if any. This requires the
complete understanding of the observational biases affecting the detection of
X-ray flares superimposed on a fading continuum at t > 1000 s. We consider all
the Swift GRBs that exhibit late time flares. Our sample consists of 36 flares,
14 with redshift measurements. We inherit the strategy of data analysis from
Chincarini et al. (2010) in order to make a direct comparison with the early
time flare properties. The morphology of the flare light curve is the same for
both early time and late time flares, while they differ energetically. The
width of late time flares increases with time similarly to the early time
flares. Simulations confirmed that the increase of the width with time is not
due to the decaying statistics, at least up to 10^4 s. The energy output of
late time flares is one order of magnitude lower than the early time flare one,
being \sim 1% E_{prompt}. The evolution of the peak luminosity as well as the
distribution of the peak flux-to-continuum ratio for late time flares indicate
that the flaring emission is decoupled from the underlying continuum,
differently from early time flares/steep decay. A sizable fraction of late time
flares are compatible with afterglow variability. The internal shock origin
seems the most promising explanation for flares. However, some differences that
emerge between late and early time flares suggest that there could be no unique
explanation about the nature of late time flares.Comment: 8 pages, 6 figures, accepted for publication in Astronomy and
Astrophysic
- âŠ