2,617 research outputs found

    <b><i>Topoisomerase 1</i></b> Promoter Variants and Benefit from Irinotecan in Metastatic Colorectal Cancer Patients

    Get PDF
    Objective: Topoisomerase 1 (topo-1) is an important target for the treatment of metastatic colorectal cancer (CRC). The aim of the present study was to evaluate the correlation between topo-1 single-nucleotide polymorphisms (SNPs) and clinical outcome in metastatic CRC (mCRC) patients. Methods: With the use of specific software (PROMO 3.0), we performed an in silico analysis of topo-1 promoter SNPs; the rs6072249 and rs34282819 SNPs were included in the study. DNA was extracted from 105 mCRC patients treated with FOLFIRI ± bevacizumab in the first line. SNP genotyping was performed by real-time PCR. Genotypes were correlated with clinical parameters (objective response rate, progression-free survival, and overall survival). Results: No single genotype was significantly associated with clinical variables. The G allelic variant of rs6072249 topo-1 SNP is responsible for GC factor and X-box-binding protein transcription factor binding. The same allelic variant showed a nonsignificant trend toward a shorter progression-free survival (GG, 7.5 months; other genotypes, 9.3 months; HR 1.823, 95% CI 0.8904-3.734; p = 0.1). Conclusion: Further analyses are needed to confirm that the topo-1 SNP rs6072249 and transcription factor interaction could be a part of tools to predict clinical outcome in mCRC patients treated with irinotecan-based regimens

    Meson Correlation Function and Screening Mass in Thermal QCD

    Full text link
    Analytical results for the spatial dependence of the correlation functions for all meson excitations in perturbative Quantum Chromodynamics, the lowest order, are calculated. The meson screening mass is obtained as a large distance limit of the correlation function. Our analysis leads to a better understanding of the excitations of Quark Gluon Plasma at sufficiently large temperatures and may be of relevance for future numerical calculations with fully interacting Quantum Chromodynamics.Comment: 11 page

    Seesaw mechanism, baryon asymmetry and neutrinoless double beta decay

    Full text link
    A simplified but very instructive analysis of the seesaw mechanism is here performed. Assuming a nearly diagonal Dirac neutrino mass matrix, we study the forms of the Majorana mass matrix of right-handed neutrinos, which reproduce the effective mass matrix of left-handed neutrinos. As a further step, the important effect of a non diagonal Dirac neutrino mass matrix is explored. The corresponding implications for the baryogenesis via leptogenesis and for the neutrinoless double beta decay are reviewed. We propose two distinct models where the baryon asymmetry is enhanced.Comment: 21 pages, RevTex. Revise

    Increased levels of RNA oxidation enhance the reversion frequency in aging pro-apoptotic yeast mutants

    Get PDF
    Despite recent advances in understanding the complexity of RNA processes, regulation of the metabolism of oxidized cellular RNAs and the mechanisms through which oxidized ribonucleotides affect mRNA translation, and consequently cell viability, are not well characterized. We show here that the level of oxidized RNAs is markedly increased in a yeast decapping Kllsm4Δ1 mutant, which accumulates mRNAs, ages much faster that the wild type strain and undergoes regulated-cell-death. We also found that in Kllsm4Δ1 cells the mutation rate increases during chronological life span indicating that the capacity to han- dle oxidized RNAs in yeast declines with aging. Lowering intracellular ROS levels by antioxidants recovers the wild- type phenotype of mutant cells, including reduced amount of oxidized RNAs and lower mutation rate. Since mRNA oxidation was reported to occur in different neurodegen- erative diseases, decapping-deficient cells may represent a useful tool for deciphering molecular mechanisms of cell response to such conditions, providing new insights into RNA modification-based pathogenesis

    Weathering of evaporites: natural versus anthropogenic signature on the composition of river waters

    Get PDF
    Weathering of evaporites strongly influences the chemistry of continental runoff, making surface waters poorly exploitable for civil uses. In south-central Sicily, this phenomenon is worsened by the occurrence of abandoned landfills of old sulphur and salt mines. The industrial evolution of the Bosco-S. Cataldo mining site leaved two landfills from the early exploitation of a sulphur mine followed by that of a kainite deposit. In particular, the weathering of these landfills leads the dissolved salt (TDS) values up to about 200 g l−1 in the Stincone–Salito Stream waters. This process induces the V, Cr and Fe desorption from sediments and particulates in the aqueous phase under reducing conditions. At the same time, the weathering of salt minerals releases Rb and Cs, originally contained in halite. The overall processes lead to the V, Cr, Fe, Rb and Cs enrichment of waters from the Stincone–Salito Stream system accompanied by a sharp growth of As content, up to about 13 µg l−1, caused by As release from Fe-bearing solids due to the high salinity. Therefore, the scenario of the weathering of Bosco-S. Cataldo mine landfills depicts an environment strongly influenced by effects of the growing salinity and euxinic water conditions where the attained TDS, Eh and pH conditions reduce the natural scavenging capability of the interested river system, favouring a growth of residence time of toxic elements in river waters

    Modelling of an intersubband quantum confined Stark effect in Ge quantum wells for mid-infrared photonics

    Get PDF
    : In this work we theoretically investigate quantum confined Stark effect of intersubband transitions in asymmetric Ge/SiGe quantum wells for intensity modulation in the mid-infrared. Our calculations show that extinction ratios up to 1 dB and modulation speeds of several tens of GHz could be obtained in 100 µm long waveguides

    Trust and privacy in distributed work groups

    Get PDF
    Proceedings of the 2nd International Workshop on Social Computing, Behavioral Modeling and PredictionTrust plays an important role in both group cooperation and economic exchange. As new technologies emerge for communication and exchange, established mechanisms of trust are disrupted or distorted, which can lead to the breakdown of cooperation or to increasing fraud in exchange. This paper examines whether and how personal privacy information about members of distributed work groups influences individuals' cooperation and privacy behavior in the group. Specifically, we examine whether people use others' privacy settings as signals of trustworthiness that affect group cooperation. In addition, we examine how individual privacy preferences relate to trustworthy behavior. Understanding how people interact with others in online settings, in particular when they have limited information, has important implications for geographically distributed groups enabled through new information technologies. In addition, understanding how people might use information gleaned from technology usage, such as personal privacy settings, particularly in the absence of other information, has implications for understanding many potential situations that arise in pervasively networked environments.Preprin

    A comparative analysis of denoising algorithms for extragalactic imaging surveys

    Get PDF
    Aims. We present a comprehensive analysis of the performance of noise-reduction (denoising) algorithms to determine whether they provide advantages in source detection, mitigating noise on extragalactic survey images. Methods. The methods we analyze here are representative of different algorithmic families: Perona-Malik filtering, bilateral filter, total variation denoising, structure-texture image decomposition, non-local means, wavelets, and block-matching We tested the algorithms on simulated images of extragalactic fields with resolution and depth typical of the Hubble, Spitzer, and Euclid Space Telescopes, and of ground-based instruments. After choosing their best internal parameters configuration, we assessed their performance as a function of resolution, background level, and image type, in addition to testing their ability to preserve the objects fluxes and shapes. Finally, we analyze, in terms of completeness and purity, the catalogs that were extracted after applying denoising algorithms on a simulated Euclid Wide Survey VIS image and on real H160 and K-band (HAWK-I) observations of the CANDELS GOODS-South field. Results. Denoising algorithms often outperform the standard approach of filtering with the point spread function (PSF) of the image. Applying structure-texture image decomposition, Perona-Malik filtering, the total variation method by Chambolle, and bilateral filtering on the Euclid-VIS image, we obtain catalogs that are both more pure and complete by 0.2 magnitude than those based on the standard approach. The same result is achieved with the structure-texture image decomposition algorithm applied on the H160 image. The relative advantage of denoising techniques with respect to PSF filtering rises with increasing depth. Moreover, these techniques better preserve the shape of the detected objects with respect to PSF smoothing. Conclusions. Denoising algorithms provide significant improvements in the detection of faint objects and enhance the scientific return of current and future extragalactic surveys. We identify the most promising denoising algorithms among the 20 techniques considered in this study
    • …
    corecore