326 research outputs found

    Analyses of odours from concentrated animal feeding operations: a review

    Get PDF
    Concentrated Animal Feeding Operations (CAFOs) are widely present all over the world due to the high population demand for food and products of animal origin. However, they have generated several environmental concerns, including odour nuisance, which affects people health and quality of life. Odours from livestock are a very complex mixtures of molecules and their analytical investigation is highly demanding. Many works have been published regarding the study of odours from CAFOs, using different techniques and technologies to face the issue. Thus, the aim of this review paper is to summarize all the ways to study odours from CAFOs, starting from the sampling methods and then treating in general the principles of Dynamic Olfactometry, Gas Chromatography coupled with Mass Spectrometry and Electronic Noses. Finally, a deep literature summary of Gas Chromatography coupled with Mass Spectrometry and Electronic Noses applied to odours coming from poultry, dairy and swine feeding operations is reported. This work aims to make some order in this field and it wants to help future researchers to deal with this environmental problem, constituting a state-of-the-art in this field

    A Concerted Investigation For Metal/Semiconductor Nanointerface : Interlayer Charge Transfer At Ag/TiO2

    Get PDF
    In the field of hybrid materials, suitably designed nanoheterojunctions enhance synergistic functionalities and allow to obtain \u201cbrave new materials\u201d with physicochemical properties that are not simply the addition of the precursors\u2019 ones, but are completely new, different, and sometimes unexpected. For these reasons, the use of them has paved the way toward promising applications in many fields, such as electrocatalysis, photocatalysis, electroanalysis, and environmental chemistry, impacting on the everyday life [1]. However, research on such systems is most often dominated by trial and error procedures, while a deep atomistic understanding of the phenomena inside the junction region driving appropriate design of the final device is missing. Here, a concerted theoretical and electrochemical investigation is proposed to gain insights into the important class of heterojunctions made by metal-semiconductor interfaces. The presented case of study is the silver/anatase hybrid nanocomposite, a very promising material for advanced sensing applications [2]. Considering that in most cases titania semiconductors are useless in electroanalysis and silver is subject to fouling and oxidation/passivation, such broad outcomes were totally unexpected. Specifically, Ag/TiO2 interfase provided the first photorenewable sensor device, pushing the limits in terms of accuracy, sensitivity, detection limits, and photoactivity [3]. Despite the ongoing research, a quantitative and comprehensive understanding of the physics behind this nanocomposite is still missing, thus preventing its full exploitation and the extension of the same paradigm to other systems and devices. In particular, cyclic voltammetry and electrochemical impedance spectroscopy are used in combination with periodic plane-wave DFT calculations, giving comparable qualitative, but also quantitative results. We measure the exceptional electrochemical virtues of the Ag/TiO2 junction in terms of current densities and reproducibility, providing their explanation at the atomic-scale level and demonstrating how and why silver acts as a positive electrode [4]. We theoretically estimate the overall amount of electron transfer toward the semiconductor side of the interface at equilibrium and suitably designed electrochemical experiments strictly agree with the theoretical charge transfer estimates. Moreover, photoelectrochemical measurements and theoretical predictions show the unique permanent charge separation occurring in the device, possible because of the synergy of Ag and TiO2, which exploits in a favorable band alignment, in a smaller electron\u2013hole recombination rate and in a reduced carrier mobility when electrons cross the metal\u2013semiconductor interface. Finally, the hybrid material is proven to be extremely robust against aging, showing complete regeneration, even after one year [4]. [1] A.V. Emeline, V.N. Kuznetsov, V.K. Ryabchuk, N. Serpone, Environ. Sci. Pollut. Res. 19 (2012) 3666\u20133675. [2] G. Soliveri, V. Pifferi, G. Panzarasa, S. Ardizzone, G. Cappelletti, D. Meroni, K. Sparnacci, L. Falciola, Analyst 140 (2015) 1486\u20131494. [3] V. Pifferi, G. Soliveri, G. Panzarasa, G. Cappelletti, D. Meroni, L. Falciola, Anal. Bioanal. Chem. 408 (2016) 7339\u20137349. [4] G. Di Liberto, V. Pifferi, L. Lo Presti, M. Ceotto, and L. Falciola, J. Phys. Chem. Lett. 8 (2017) 5372\u20135377

    Studying the evolution in time of bimetallic nanoparticles morphology by Cyclic Voltammetry

    Get PDF
    Over the last decades, bimetallic nanosized systems have attracted more and more interest thanks to their novel optical, catalytic, magnetic, and sensing properties, often different from the ones of their monometallic counterparts. Studies directed towards the size, shape, composition, and functionalization of the bimetallic nanoparticles are optimized to design sophisticated materials for the intended applications. Considering these facts, it is important to evaluate not only the type and the quantity of the two metals involved, but also their morphological distribution (e.g. alloy or core-shell). Characterization techniques normally used to investigate bimetallic systems are HR-TEM and EXAFS, very expensive and not so easily accessible. Recently, electrochemistry has been employed as alternative or complementary, low-cost, efficient technique with very promising results, allowing the discrimination between alloyed and perfect or defective core-shell systems after their synthesis. A further achievement is the possibility to follow step by step the formation morphology of these nanomaterials during their synthetic procedure. In the present work, we present a study on Au-Pt bimetallic nanoparticles, in form of alloy or core-shell. Cyclovoltammetry (CV) is used as a fast, low-cost and simple screening technique to distinguish the general composition of the sample and to understand the evolution in time of the systems morphology during their synthesis. An additional advantage is the possibility to conduct the study of the material simply in liquid form, without the need of using solid supports, as normally required by other characterization techniques. Interesting results are obtained for Au-based bimetallic samples, gaining information in accordance with TEM images and EXAFS spectra. This fact moves the interest towards the study of other bimetallic systems, to be used in catalytic, electrocatalytic and electroanalytical applications

    Efficiency of an Air Cleaner Device in Reducing Aerosol Particulate Matter (PM) in Indoor Environments

    Get PDF
    Abstract: Indoor air quality (IAQ) in household environments is mandatory since people spend most of their time in indoor environments. In order to guarantee a healthy environment, air purification devices are often employed. In the present work, a commercial household vacuum cleaner has been tested in order to verify its eciency in reducing the mass concentration and particle number of aerosol particulate matter (PM). The eciency has been tested measuring, while the instrument was working, PM10 (particles with aerodynamic diameter less than 10 m), PM2.5 (particles with aerodynamic diameter less than 2.5 m), PM1 (particles with aerodynamic diameter less than 1 m), and 7 size-fractions in the range between 0.3 and >10 m. Measurements have been carried out by means of a portable optical particle counter instrument and simulating the working conditions typical of a household environment. It has been found that the tested commercial device significantly reduces both PM concentrations and particle number, especially in the finest fraction, i.e., particles in the range 0.3\u20130.5 m, allowing an improvement of indoor air quality

    Mesoporous silica networks with improved diffusion and interference-rejecting properties for electroanalytical sensing

    Get PDF
    Mesoporous silica materials characterized by well-ordered microstructure and size- and shape-controlled pores have attracted much attention in the last years. These systems can be used for the development of functional thin films for advanced applications in catalysis and electrocatalysis, sensors and actuators, separation techniques, micro- and nano-electronic engineering [1-2]. In this work, \u201cinsulating\u201d and mesoporous silica films were prepared by spin coating a home-made silica sol on a cleaned ITO glass support. The mesoporosity was controlled by the use of Polystyrene (PS) latex beads with different dimensions (30-60-100 nm) as template. The number of successive multi-layer depositions was varied (1-2-3-5 layers) and after the template removal, stable, homogeneous and reproducible transparent films were obtained, characterized by an interconnected porous structure. The morphological features and the physicochemical and optical properties of the films and/or sol-precursors were studied by DLS, FE-SEM, AFM, UV-vis transmittance spectroscopy and wettability analyses. Moreover, a deep electrochemical characterization was also performed by Cyclic Voltammetry (CV) and Electrochemical Impedance Spectroscopy (EIS). In particular, the use of two redox mediator probes [(K4Fe(CN)6) and (Ru(NH3)6Cl3)], presenting opposite charge and different diffusional behaviour, allowed the comprehension of the mass transport and charge transfer phenomena, evidencing the effects of spatial confinement and charge selection. In the case of \u201cinsulating\u201d films prepared without the use of PS latexes, we proved an experimental evidence for theoretical models [3] concerning electroinactive layer-modified electrodes, with a scan-rate-dependent variation of the CV shape due to a progressive increase in the diffusion coefficient inside the insulating layer. A complex balance between diverging effects (higher hydrophilicity and insulating behavior effects of silica) when increasing the numbers of layers was also observed [4]. In the case of mesoporous layers, a better electrochemical response of smaller pores and of thicker layers was found, due to two main cooperative phenomena: i) a diffusion modification from fully planar to radial-convergent at the pore-silica interface due to surface porosity; ii) the presence of pores in a hydrophilic matrix which leads to a capillary pull effects, stronger in the case of smaller hydrophilic pores. The easiness of preparation and the interesting properties of these devices pave the way towards their use in many fields, particularly trace electroanalysis in real matrices. In fact, for example, the porous and properly charged network is able to exclude interfering macromolecules (mucin in our case), preventing electrode biofouling and enhancing the performances of the sensor towards dopamine detection. References [1] M. Ogawa, Chem. Rec. 17 (2017) 217-232. [2] A. Walcarius, Chem. Soc. Rev. 42 (2013) 4098-4140. [3] D. Menshykau, R.G. Compton, Langmuir 25 (2009) 2519\u20132529. [4] V. Pifferi, L. Rimoldi, D. Meroni, F. Segrado, G. Soliveri, S. Ardizzone, L. Falciola, Electrochem. Commun. 81 (2017) 102-105

    A Concerted Electrochemical and Theoretical Investigation of the Ag/TiO2 nano-heterojunction

    Get PDF
    Suitably designed nano-heterojunctions are able to enhance synergistic functionalities of different materials yielding to \u201cbrave new systems\u201d with innovative and sometimes unexpected physicochemical properties [1]. However, the complete understanding of these devices has to be deeply studied. In this work, a concerted theoretical and electrochemical investigation is proposed to gain insights into a metal-semiconductor interface, namely that created by the silver/anatase hybrid nanocomposite, a promising material for advanced sensing applications [2]. In particular, it provided the first photorenewable and anti-fouling sensor device, enhancing the analytical limits in terms of accuracy, sensitivity, detection limits, and photoactivity [3]. Furthermore, the hybrid material is proven to be extremely robust against aging, showing complete regeneration, also after one-year storage. The electrochemical/electroanalytical virtues of the Ag/TiO2 junction were evaluated in terms of current densities and reproducibility, providing their explanation at the atomic-scale level and demonstrating how and why the final device can act as silver-cation positive electrode [4]. Moreover, Cyclic Voltammetry and Electrochemical Impedance Spectroscopy were used in combination with periodic plane-wave DFT calculations, giving comparable qualitative but also quantitative results. In particular, we theoretically estimated the overall amount of electron transfer toward the semiconductor side of the interface at equilibrium and suitably designed electrochemical experiments, which strictly agree with the theoretical charge transfer estimates. Moreover, photoelectrochemical measurements and theoretical predictions show the unique permanent charge separation occurring in the device [4]. [1] A.V. Emeline, V.N. Kuznetsov, V.K. Ryabchuk, N. Serpone, Environ. Sci. Pollut. Res., 2012, 19, 3666\u20133675. [2] G. Soliveri, V. Pifferi, G. Panzarasa, S. Ardizzone, G. Cappelletti, D. Meroni, K. Sparnacci, L. Falciola, Analyst, 2015, 140, 1486\u20131494. [3] V. Pifferi, G. Soliveri, G. Panzarasa, G. Cappelletti, D. Meroni, L. Falciola, Anal. Bioanal. Chem., 2016, 408, 7339\u20137349. [4] G. Di Liberto, V. Pifferi, L. Lo Presti, M. Ceotto, L. Falciola, J. Phys. Chem. Lett., 2017, 8, 5372\u20135377

    Microplastics in deep water : a combined GC-MS e FT-IR approach

    Get PDF
    Microplastics are water-insoluble, solid polymer particles that are 645\u202fmm in size. A lower size boundary has not been defined, but particles below 1\u202f\u3bcm are usually referred to as nanoplastics rather than microplastics. The ubiquity of microplastics of all sizes in surface water, groundwater and wastewater has raised the question if pollution of drinking water occurs and to date, few studies indeed described the presence of this new contaminant in tap and bottled water. Toxicity it is not yet known, they might cause local inflammations in the gut, but a transport into organs might occur. As a final problem in this field, microplastics in the environment are difficult to sample, to identify and standardized methods do not exist. For this reason, we have been involved in a research project finalized to the definition of a protocol strategy for sampling and analysis of microplastics in drinking waters, coming from deep water wells, in the networks of three large cities in the Northern part of Italy. The project is on going and presently two groups of deep water samples have been collected in the city of Milano and Brescia, before and after the treatment stages used for the urban network. Great attention has been paid to sampling and extraction steps as microplastic contamination, in this kind of samples, is expected to be very low and contamination during sampling might occur through air or materials. Analytical methods have been defined for the detection of main microplastic contamination, like PE/PP, PS, PA, PVC e PET residues > 1 \ub5m. Samples have been analysed first by a non-destructive approach using a Spotlight 200i microscope equipped with a \ub5ATR probe and coupled to an FT-IR spectrophotometer, followed by a mass spectrometric characterization of the polymers by a solid phase microextration (SPME) GC-MS of thermal decomposition products (TED) of microplastic residues. Results will be presented and critically discussed

    Au Nanoparticles Decorated Graphene-Based Hybrid Nanocomposite for As(III) Electroanalytical Detection

    Get PDF
    Electrochemical sensors integrating hybrid nanostructured platforms are a promising alternative to conventional detection techniques for addressing highly relevant challenges of heavy metal determination in the environment. Hybrid nanocomposites based on graphene derivatives and inorganic nanoparticles (NPs) are ideal candidates as active materials for detecting heavy metals, as they merge the relevant physico-chemical properties of both the components, finally leading to a rapid and sensitive current response. In this work, a hybrid nanocomposite formed of reduced graphene oxide (RGO) sheets, surface functionalized by π-π interactions with 1-pyrene carboxylic acid (PCA), and decorated in situ by Au NPs, was synthesized by using a colloidal route. The hybrid nanocomposite was characterized by cyclic voltammetry and electrochemical impedance spectroscopy with respect to the corresponding single components, both bare and deposited as a layer-by-layer junction onto the electrode. The results demonstrated the high electrochemical activity of the hybrid nanocomposite with respect to the single components, highlighting the crucial role of the nanostructured surface morphology of the electrode and the PCA coupling agent at the NPs-RGO interphase in enhancing the nanocomposite electroactivity. Finally, the Au NP-decorated PCA-RGO sheets were tested by anodic stripping voltammetry of As(III) ion—a particularly relevant analyte among heavy metal ions—in order to assess the sensing ability of the nanocomposite material with respect to its single components. The nanocomposite has been found to present a sensitivity higher than that characterizing the bare components, with LODs complying with the directives established by the U.S. EPA and in line with those reported for state-of-the-art electrochemical sensors based on other Au-graphene nanocomposites

    Chlorine Dioxide Degradation Issues on Metal and Plastic Water Pipes Tested in Parallel in a Semi-Closed System

    Get PDF
    Chlorine dioxide (ClO2) has been widely used as a disinfectant in drinking water in the past but its effects on water pipes have not been investigated deeply, mainly due to the difficult experimental set-up required to simulate real-life water pipe conditions. In the present paper, four different kinds of water pipes, two based on plastics, namely random polypropylene (PPR) and polyethylene of raised temperature (PERT/aluminum multilayer), and two made of metals, i.e., copper and galvanized steel, were put in a semi-closed system where ClO2 was dosed continuously. The semi-closed system allowed for the simulation of real ClO2 concentrations in common water distribution systems and to simulate the presence of pipes made with different materials from the source of water to the tap. Results show that ClO2 has a deep effect on all the materials tested (plastics and metals) and that severe damage occurs due to its strong oxidizing power in terms of surface chemical modification of metals and progressive cracking of plastics. These phenomena could in turn become an issue for the health and safety of drinking water due to progressive leakage of degraded products in the water

    Voltammetric characterization of gold-based bimetallic (AuPt; AuPd; AuAg) nanoparticles

    Get PDF
    Bimetallic nanoparticles are nowadays some of the most promising materials for catalytic, electrocatalytic and electroanalytical applications thanks to their novel optical, catalytic, magnetic, and sensing properties. Such novel features, often different and enhanced with respect to the monometallic counterparts, make these systems good candidates to be conveniently applied in a wide range of fields. The possibility to obtain different kinds of bimetallic composites (in terms of composition, structure, metal loading, morphology, etc.) goes in parallel with the need of powerful and accurate characterization tools. Among the commonly involved techniques like Optical Spectroscopy and Dynamic Light Scattering (DLS), also the more powerful Transmission Electron Microscopy (HR-TEM) and Extended X-Ray Absorption Fine Structure (EXAFS) are widely used. However, these analytical tools present some drawbacks in terms of high costs and low accessibility. In this context, electrochemistry and particularly Cyclic Voltammetry, is here proposed as an alternative, low cost, easy to use and simple characterization technique. The possibility to use electrochemical methods to study the final structure of bimetallic nanocomposites was already demonstrated in the Literature [1-2], but there is still lack of information on how such systems change and evolve in time and after aging periods. Therefore, Cyclic Voltammetry is here used, as a complementary technique to HR-TEM and EXAFS not only to investigate the structure of alloyed or core-shell gold-based (Au-Pt; Au-Pd; Au-Ag) systems (by studying the quantity and type of metals present in the materials), but also to elucidate the evolution and growth in time of such bimetallic samples. Time evolution characterization allows to control the morphology and to fix it at the desired point. Finally, the characterized gold-based nanocomposites are used in electrochemical sensing and electrocatalytic applications. A strong improvement in the response, in terms of higher peak currents and electrocatalytic effects, of the bimetallic systems with respect to the monometallic counterparts is evidenced, due to the intimate contact between the two metals, which is responsible of synergistic effects. Also, the effects of an eventual carbonaceous support on the properties of the metal nanoparticles and the possible synergistic effects between composites and supports are investigated [3]. [1] K. Tschulik, K. Ngamchuea, C. Ziegler, M.G. Beier, C. Damm, A. Eychmueller, R.G. Compton, Adv. Funct. Mater., 2015, 25, 5149\u20135158. [2] V. Pifferi, C. Chan-Thaw, S. Campisi, A. Testolin, A. Villa, L. Falciola, L. Prati, Molecules, 2016, 21, 261. [3] A. Testolin, S.Cattaneo, W. Wang, D. Wang, V. Pifferi, L. Prati, L. Falciola, A. Villa, Surfaces, 2019, 2, 205-215
    • …
    corecore