2 research outputs found

    Variation in Resource Acquisition and Utilization Traits Between Native and Invasive Perennial Forbs

    Get PDF
    Understanding the functional traits that allow invasives to outperform natives is a necessary first step in improving our ability to predict and manage the spread of invaders. In nutrient-limited systems, plant competitive ability is expected to be closely tied to the ability of a plant to exploit nutrient-rich microsites and use these captured nutrients efficiently. The broad objective of this work was to compare the ability of native and invasive perennial forbs to acquire and use nutrients from nutrient-rich microsites. We evaluated morphological and physiological responses among four native and four invasive species exposed to heterogeneous (patch) or homogeneous (control) nutrient distribution. Invasives, on average, allocated more biomass to roots and allocated proportionately more root length to nutrient-rich microsites than did natives. Invasives also had higher leaf N, photosynthetic rates, and photosynthetic nitrogen use efficiency than natives, regardless of treatment. While these results suggest multiple traits may contribute to the success of invasive forbs in low-nutrient environments, we also observed large variation in these traits among native forbs. These observations support the idea that functional trait variation in the plant community may be a better predictor of invasion resistance than the functional group composition of the plant community

    Comparative Ecology of Sarcobatus Baileyi and Sarcobatus Vermiculatus in Eastern California

    Get PDF
    Greasewood (Sarcobatus) is a succulent-leaved, halophytic shrub of North American origin. The genus comprises 2 species: Sarcobatus baileyi and Sarcobatus vermiculatus. Sarcobatus vermiculatus is common throughout much of western North America, but S. baileyi is much more limited in distribution and was previously thought to be endemic to Nevada. Here we document and describe a S. baileyi population in eastern California, comparing its morphology and ecology to an adjacent S. vermiculatus population. Morphologically, S. baileyi is smaller in stature but produces larger seeds; however, fewer S. baileyi seeds germinated and survived a 20-day laboratory incubation compared to seeds of S. vermiculatus. Sarcobatus baileyi has higher leaf Na concentrations and operates at much lower plant water potentials than S. vermiculatus under field conditions; however, no significant differences were observed between the 2 species in long-term water-use efficiency as measured by leaf delta(13)C. Leaf Na concentrations were very low in both species. Overall, these species differ greatly in a number of traits that are consistent with the upland, nonphreatophytic character of S. baileyi, which is in stark contrast to the phreatophytic character of S. vermiculatus. Both species, however, are very salt tolerant and have low leaf N concentrations, indicating the low nutrient availability and the potentially high salinity of their extreme habitats. Further investigation of comparable desert ridge environments should be conducted to determine the extent of S. baileyi in eastern California, and common garden comparisons of the 2 species should be conducted to compare their ecophysiological traits
    corecore