5 research outputs found

    The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews [version 3; referees: 3 approved]

    Get PDF
    Background: The extraction of data from the reports of primary studies, on which the results of systematic reviews depend, needs to be carried out accurately. To aid reliability, it is recommended that two researchers carry out data extraction independently. The extraction of statistical data from graphs in PDF files is particularly challenging, as the process is usually completely manual, and reviewers need sometimes to revert to holding a ruler against the page to read off values: an inherently time-consuming and error-prone process. Methods: To mitigate some of the above problems we integrated and customised two existing JavaScript libraries to create a new web-based graphical data extraction tool to assist reviewers in extracting data from graphs. This tool aims to facilitate more accurate and timely data extraction through a user interface which can be used to extract data through mouse clicks. We carried out a non-inferiority evaluation to examine its performance in comparison with participants’ standard practice for extracting data from graphs in PDF documents. Results: We found that the customised graphical data extraction tool is not inferior to users’ (N=10) prior standard practice. Our study was not designed to show superiority, but suggests that, on average, participants saved around 6 minutes per graph using the new tool, accompanied by a substantial increase in accuracy. Conclusions: Our study suggests that the incorporation of this type of tool in online systematic review software would be beneficial in facilitating the production of accurate and timely evidence synthesis to improve decision-making

    The development and evaluation of an online application to assist in the extraction of data from graphs for use in systematic reviews [version 2; referees: 3 approved]

    Get PDF
    Background: The extraction of data from the reports of primary studies, on which the results of systematic reviews depend, needs to be carried out accurately. To aid reliability, it is recommended that two researchers carry out data extraction independently. The extraction of statistical data from graphs in PDF files is particularly challenging, as the process is usually completely manual, and reviewers need sometimes to revert to holding a ruler against the page to read off values: an inherently time-consuming and error-prone process. Methods: To mitigate some of the above problems we integrated and customised two existing JavaScript libraries to create a new web-based graphical data extraction tool to assist reviewers in extracting data from graphs. This tool aims to facilitate more accurate and timely data extraction through a user interface which can be used to extract data through mouse clicks. We carried out a non-inferiority evaluation to examine its performance in comparison to standard practice. Results: We found that the customised graphical data extraction tool is not inferior to users’ prior preferred current approaches. Our study was not designed to show superiority, but suggests that there may be a saving in time of around 6 minutes per graph, accompanied by a substantial increase in accuracy. Conclusions: Our study suggests that the incorporation of this type of tool in online systematic review software would be beneficial in facilitating the production of accurate and timely evidence synthesis to improve decision-making

    Animal models of chemotherapy-induced peripheral neuropathy:a machine-assisted systematic review and meta-analysis

    Get PDF
    <div><p>We report a systematic review and meta-analysis of research using animal models of chemotherapy-induced peripheral neuropathy (CIPN). We systematically searched 5 online databases in September 2012 and updated the search in November 2015 using machine learning and text mining to reduce the screening for inclusion workload and improve accuracy. For each comparison, we calculated a standardised mean difference (SMD) effect size, and then combined effects in a random-effects meta-analysis. We assessed the impact of study design factors and reporting of measures to reduce risks of bias. We present power analyses for the most frequently reported behavioural tests; 337 publications were included. Most studies (84%) used male animals only. The most frequently reported outcome measure was evoked limb withdrawal in response to mechanical monofilaments. There was modest reporting of measures to reduce risks of bias. The number of animals required to obtain 80% power with a significance level of 0.05 varied substantially across behavioural tests. In this comprehensive summary of the use of animal models of CIPN, we have identified areas in which the value of preclinical CIPN studies might be increased. Using both sexes of animals in the modelling of CIPN, ensuring that outcome measures align with those most relevant in the clinic, and the animal’s pain contextualised ethology will likely improve external validity. Measures to reduce risk of bias should be employed to increase the internal validity of studies. Different outcome measures have different statistical power, and this can refine our approaches in the modelling of CIPN.</p></div

    Protocol for a retrospective, controlled cohort study of the impact of a change in Nature journals' editorial policy for life sciences research on the completeness of reporting study design and execution

    Get PDF
    In recent years there has been increasing concern about the rigor of laboratory research. Here we present the protocol for a study comparing the completeness of reporting of in vivo and in vitro research carried in Nature Publication Group journals before and after the introduction of a change in editorial policy (the introduction of a set of guidelines for reporting); and in similar research published in other journals in the same periods. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s11192-016-1964-8) contains supplementary material, which is available to authorized users

    Systematic review and meta-analysis of the efficacy of interleukin-1 receptor antagonist in animal models of stroke: an update

    Get PDF
    Interleukin-1 receptor antagonist (IL-1 RA) is an anti-inflammatory protein used clinically to treat rheumatoid arthritis and is considered a promising candidate therapy for stroke. Here, we sought to update the existing systematic review and meta-analysis of IL-1 RA in models of ischaemic stroke, published in 2009, to assess efficacy, the range of circumstances in which efficacy has been tested and whether the data appear to be confounded due to reported study quality and publication bias. We included 25 sources of data, 11 of which were additional to the original review. Overall, IL-1 RA reduced infarct volume by 36.2 % (95 % confidence interval 31.6–40.7, n = 76 comparisons from 1283 animals). Assessments for publication bias suggest 30 theoretically missing studies which reduce efficacy to 21.9 % (17.3–26.4). Efficacy was higher where IL-1 RA was administered directly into the ventricles rather than peripherally, and studies not reporting allocation concealment during the induction of ischaemia reported larger treatment effects. The preclinical data supporting IL-1 RA as a candidate therapy for ischaemic stroke have improved. The reporting of measures to reduce the risk of bias has improved substantially in this update, and studies now include the use of animals with relevant co-morbidities. ELECTRONIC SUPPLEMENTARY MATERIAL: The online version of this article (doi:10.1007/s12975-016-0489-z) contains supplementary material, which is available to authorized users
    corecore