54 research outputs found

    Bovine Parasitic Gastroenteritis and Bronchitis: Control vs Immunity

    Get PDF
    This thesis comprises a series of studies carried out (1) to review the literature on parasitic gastroenteritis and bronchitis with special emphasis on epidemiology, immunity and control methods (2) to determine the influence of anthelmintic prophylaxis in calves on their subsequent immunity to Ostertagia, Cooperia and Dictyocaulus as yearlings (3) to assess the parasitological status of adult dairy cattle and (4) to compare the efficacy of several techniques used in these studies

    Comparative full genome sequence analysis of wild-type and chicken embryo origin vaccine-like infectious laryngotracheitis virus field isolates from Canada

    Get PDF
    Infectious laryngotracheitis (ILT), caused by infectious laryngotracheitis virus (ILTV), occurs sporadically in poultry flocks in Canada. Live attenuated chicken embryo origin (CEO) vaccines are being used routinely to prevent and control ILTV infections. However, ILT outbreaks still occur since vaccine strains could revert to virulence in the field. In this study, 7 Canadian ILTV isolates linked to ILT outbreaks across different time in Eastern Canada (Ontario; ON and Quebec; QC) were whole genome sequenced. Phylogenetic analysis confirmed the close relationship between the ON isolates and the CEO vaccines, whereas the QC isolates clustered with strains previously known as CEO revertant and wild-type ILTVs. Recombination network analysis of ILTV sequences revealed clear evidence of historical recombination between ILTV strains circulating in Canada and other geographical regions. The comparison of ON CEO clustered and QC CEO revertant clustered isolates with the LT Blen® CEO vaccine reference sequence showed amino acid differences in 5 and 12 open reading frames (ORFs), respectively. Similar analysis revealed amino acid differences in 32 ORFs in QC wild-type isolates. Compared to all CEO vaccine strains in the public domain, the QC wild-type isolates showed 15 unique mutational sites leading to amino acid changes in 13 ORFs. Our outcomes add to the knowledge of the molecular mechanisms behind ILTV genetic variance and provide genetic markers between wild-type and vaccine strains

    Host immune response modulation in avian coronavirus infection : tracheal transcriptome profiling in vitro and in vivo

    Get PDF
    Infectious bronchitis virus (IBV) is a highly contagious Gammacoronavirus causing moderate to severe respiratory infection in chickens. Understanding the initial antiviral response in the respiratory mucosa is crucial for controlling viral spread. We aimed to characterize the impact of IBV Delmarva (DMV)/1639 and IBV Massachusetts (Mass) 41 at the primary site of infection, namely, in chicken tracheal epithelial cells (cTECs) in vitro and the trachea in vivo. We hypothesized that some elements of the induced antiviral responses are distinct in both infection models. We inoculated cTECs and infected young specific pathogen-free (SPF) chickens with IBV DMV/1639 or IBV Mass41, along with mock-inoculated controls, and studied the transcriptome using RNA-sequencing (RNA-seq) at 3 and 18 h post-infection (hpi) for cTECs and at 4 and 11 days post-infection (dpi) in the trachea. We showed that IBV DMV/1639 and IBV Mass41 replicate in cTECs in vitro and the trachea in vivo, inducing host mRNA expression profiles that are strain- and time-dependent. We demonstrated the different gene expression patterns between in vitro and in vivo tracheal IBV infection. Ultimately, characterizing host–pathogen interactions with various IBV strains reveals potential mechanisms for inducing and modulating the immune response during IBV infection in the chicken trachea

    Chicken astrovirus (CAstV) molecular studies reveal evidence of multiple past recombination events in sequences originated from clinical samples of white chick syndrome (WCS) in Western Canada

    Get PDF
    In this study, we aimed to molecularly characterize 14 whole genome sequences of chicken astrovirus (CAstV) isolated from samples obtained from white chick syndrome (WCS) outbreaks in Western Canada during the period of 2014–2019. Genome sequence comparisons showed all these sequences correspond to the novel Biv group from which no confirmed representatives were published in GenBank. Molecular recombination analyses using recombination detection software (i.e., RDP5 and SimPlot) and phylogenetic analyses suggest multiple past recombination events in open reading frame (ORF)1a, ORF1b, and ORF2. Our findings suggest that recombination events and the accumulation of point mutations may have contributed to the substantial genetic variation observed in CAstV and evidenced by the current seven antigenic sub-clusters hitherto described. This is the first paper that describes recombination events in CAstV following analysis of complete CAstV sequences originated in Canada

    Analysis of whole-genome sequences of infectious laryngotracheitis virus isolates from poultry flocks in Canada : evidence of recombination

    Get PDF
    Infectious laryngotracheitis virus (ILTV) is a herpes virus that causes an acute respiratory disease of poultry known as infectious laryngotracheitis (ILT). Chicken embryo origin (CEO) and tissue culture origin (TCO) live attenuated vaccines are routinely used for the control of ILT. However, vaccine virus is known to revert to virulence, and it has been recently shown that ILT field viral strains can undergo recombination with vaccinal ILTV and such recombinant ILT viruses possess greater transmission and pathogenicity potential. Based on complete or partial genes of the ILTV genome, few studies genotyped ILTV strains circulating in Canada, and so far, information is scarce on whole-genome sequencing or the presence of recombination in Canadian ILTV isolates. The objective of this study was to genetically characterize the 14 ILTV isolates that originated from three provinces in Canada (Alberta, British Columbia and Quebec). To this end, a phylogenetic analysis of 50 ILTV complete genome sequences, including 14 sequences of Canadian origin, was carried out. Additional phylogenetic analysis of the unique long, unique short and inverted repeat regions of the ILTV genome was also performed. We observed that 71%, 21% and 7% of the ILTV isolates were categorized as CEO revertant, wild-type and TCO vaccine-related, respectively. The sequences were also analyzed for potential recombination events, which included evidence in the British Columbia ILTV isolate. This event involved two ILTV vaccine (CEO) strains as parental strains. Recombination analysis also identified that one ILTV isolate from Alberta as a potential parental strain for a United States origin ILTV isolate. The positions of the possible recombination breakpoints were identified. These results indicate that the ILTV wild-type strains can recombine with vaccinal strains complicating vaccine-mediated control of ILT. Further studies on the pathogenicity of these ILTV strains, including the recombinant ILTV isolate are currently ongoing

    Genotyping of Infectious Laryngotracheitis Virus (ILTV) isolates from Western Canadian provinces of Alberta and British Columbia based on partial Open Reading Frame (ORF) a and b

    Get PDF
    Infectious laryngotracheitis virus (ILTV) causes an acute upper respiratory disease in chickens called infectious laryngotracheitis (ILT). Live attenuated vaccines are effective in disease control; however, they have residual virulence, which makes them able to replicate, cause disease and revert to the original virulent form. Information is scarce on the molecular nature of ILTV that is linked to ILT in Canada. This study aims to determine whether isolates originating from ILT cases in Western Canada are a wild type or vaccine origin. Samples submitted for the diagnosis of ILT between 2009–2018 were obtained from Alberta (AB, n = 46) and British Columbia (BC, n = 9). For genotyping, a Sanger sequencing of open reading frame (ORF) a and b was used. A total of 27 from AB, and 5 from BC samples yielded a fragment of 1751 base pairs (bp). Three of the BC samples classified as group IV (CEO vaccine strains) and 2 as group V (CEO revertant). Of the AB samples, 22 samples clustered with group V, 3 with group VI (wild type), and 2 with group VII, VIII, and IX (wild type). Overall, 17 non-synonymous single nucleotide polymorphisms (SNPs) were detected. Further studies are underway to ascertain the virulence and transmission potential of these isolates

    Evaluation of recombinant Herpesvirus of Turkey Laryngotracheitis (rHVT-LT) Vaccine against Genotype VI Canadian Wild-Type Infectious Laryngotracheitis Virus (ILTV) Infection

    Get PDF
    In Alberta, infectious laryngotracheitis virus (ILTV) infection is endemic in backyard poultry flocks; however, outbreaks are only sporadically observed in commercial flocks. In addition to ILTV vaccine revertant strains, wild-type strains are among the most common causes of infectious laryngotracheitis (ILT). Given the surge in live attenuated vaccine-related outbreaks, the goal of this study was to assess the efficacy of a recombinant herpesvirus of turkey (rHVT-LT) vaccine against a genotype VI Canadian wild-type ILTV infection. One-day-old specific pathogen-free (SPF) White Leghorn chickens were vaccinated with the rHVT-LT vaccine or mock vaccinated. At three weeks of age, half of the vaccinated and the mock-vaccinated animals were challenged. Throughout the experiment, weights were recorded, and feather tips, cloacal and oropharyngeal swabs were collected for ILTV genome quantification. Blood was collected to isolate peripheral blood mononuclear cells (PBMC) and quantify CD4+ and CD8+ T cells. At 14 dpi, the chickens were euthanized, and respiratory tissues were collected to quantify genome loads and histological examination. Results showed that the vaccine failed to decrease the clinical signs at 6 days post-infection. However, it was able to significantly reduce ILTV shedding through the oropharyngeal route. Overall, rHVT-LT produced a partial protection against genotype VI ILTV infection

    Pathogenic and transmission potential of wildtype and chicken embryo origin (CEO) vaccine revertant infectious laryngotracheitis virus

    Get PDF
    Infectious laryngotracheitis (ILT) is an infectious upper respiratory tract disease that impacts the poultry industry worldwide. ILT is caused by an alphaherpesvirus commonly referred to as infectious laryngotracheitis virus (ILTV). Vaccination with live attenuated vaccines is practiced regularly for the control of ILT. However, extensive and improper use of live attenuated vaccines is related to vaccine viruses reverting to virulence. An increase in mortality and pathogenicity has been attributed to these vaccine revertant viruses. Recent studies characterized Canadian ILTV strains originating from ILT outbreaks as related to live attenuated vaccine virus revertants. However, information is scarce on the pathogenicity and transmission potential of these Canadian isolates. Hence, in this study, the pathogenicity and transmission potential of two wildtype ILTVs and a chicken embryo origin (CEO) vaccine revertant ILTV of Canadian origin were evaluated. To this end, 3-week-old specific pathogen-free chickens were experimentally infected with each of the ILTV isolates and compared to uninfected controls. Additionally, naĂŻve chickens were exposed to the experimentally infected chickens to mimic naturally occurring infection. Pathogenicity of each of these ILTV isolates was evaluated by the severity of clinical signs, weight loss, mortality, and lesions observed at the necropsy. The transmission potential was evaluated by quantification of ILTV genome loads in oropharyngeal and cloacal swabs and tissue samples of the experimentally infected and contact-exposed chickens, as well as in the capacity to produce ILT in contact-exposed chickens. We observed that the CEO vaccine revertant ILTV isolate induced severe disease in comparison to the two wildtype ILTV isolates used in this study. According to ILTV genome load data, CEO vaccine revertant ILTV isolate was successfully transmitted to naĂŻve contact-exposed chickens in comparison to the tested wildtype ILTV isolates. Overall, the Canadian origin CEO vaccine revertant ILTV isolate possesses higher virulence, and dissemination potential, when compared to the wildtype ILTV isolates used in this study. These findings have serious implications in ILT control in chickens

    Comparative pathogenicity of infectious bronchitis virus Massachusetts and Delmarva (DMV/1639) genotypes in laying hens

    Get PDF
    Infectious bronchitis (IB) is a highly contagious and acute viral disease of chicken caused by the infectious bronchitis virus (IBV) of the family Coronaviridae. Even with extensive vaccination against IB by the poultry industry, the occurrence of new IBV genotypes is a continuous challenge encountered by the global poultry industry. This experiment was designed to compare the pathogenicity of two IBV strains belonging to Massachusetts (Mass) and Delmarva DMV/1639 genotypes. Specific pathogen-free laying hens were challenged during the peak of production (30 weeks), keeping a mock-infected control group. During 21 days of observation following infection, a significant drop in egg production with miss-shaped and soft shells was observed in the DMV/1639 IBV-infected hens only. The DMV/1639 IBV infected group showed prolonged and higher cloacal viral shedding compared with the Mass IBV-infected group. At the end of the study (21 days post-infection), the viral genome loads in the respiratory, urogenital, and immune tissues were significantly higher in the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Macroscopic lesions such as distorted ova leading to egg peritonitis were observed only in the DMV/1639 IBV-infected group. Moreover, microscopic lesion scores were significantly higher in the lung, kidney, cecal tonsils, and oviduct of the DMV/1639 IBV-infected group compared with the Mass IBV-infected group. Finally, the apoptosis index in the kidney, ovary, magnum, isthmus, and shell gland was significantly higher in the DMV/1639 IBV-infected group compared with the control and Mass-infected groups. This study examined the pathogenicity of two IBV genotypes that are impacting the layer industry in North America

    Avian Viruses that Impact Table Egg Production

    No full text
    Eggs are a common source of protein and other nutrient components for people worldwide. Commercial egg-laying birds encounter several challenges during the long production cycle. An efficient egg production process requires a healthy bird with a competent reproductive system. Several viral pathogens that can impact the bird’s health or induce reversible or irreversible lesions in the female reproductive organs adversely interfere with the egg industry. The negative effects exerted by viral diseases create a temporary or permanent decrease in egg production, in addition to the production of low-quality eggs. Several factors including, but not limited to, the age of the bird, and the infecting viral strain and part of reproductive system involved contribute to the form of reproductive disease encountered. Advanced methodologies have successfully elucidated some of the virus–host interactions relevant to the hen’s reproductive performance, however, this branch needs further research. This review discusses the major avian viral infections that have been reported to adversely affect egg productivity and quality and aims to summarize the current understanding of the mechanisms that underlie the observed negative effects
    • …
    corecore