60 research outputs found

    Exposé des titres et travaux scientifiques du Dr Ém. Gaujoux...

    No full text
    <p>Sensitivity measure for the prediction of new bioactive molecules with DS2 (homogeneous).</p

    Rankings of existing best performing classifier (LSVM) and AdaBoost ensemble classifiers, based on Kendall’s W test results using the MDDR dataset by specificity measure.

    No full text
    <p>Rankings of existing best performing classifier (LSVM) and AdaBoost ensemble classifiers, based on Kendall’s W test results using the MDDR dataset by specificity measure.</p

    Rankings of existing best performing classifier (LSVM) and AdaBoost ensemble classifiers, based on Kendall’s W test results using the MDDR dataset by AUC measure.

    No full text
    <p>Rankings of existing best performing classifier (LSVM) and AdaBoost ensemble classifiers, based on Kendall’s W test results using the MDDR dataset by AUC measure.</p

    Dynamin inhibition by dynasore affects LTP, a type of synaptic plasticity due to sustained activity in hippocampus.

    No full text
    <p><b>A</b>, Dynasore (80 μM, 20 minute perfusion, open triangles) decreases LTP induced by theta-burst stimulation in CA<sub>3</sub>–CA<sub>1</sub> synapses compared to vehicle-treated slices (black circles)(F<sub>1,10</sub> = 9.081, <i>p</i> = 0.013). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. <b>B</b>, Post-tetanus dynamin inhibition by dynasore (80 μm, 20 minute perfusion <i>after</i> the tetanus delivery, open triangle) induced by theta-burst stimulation in CA<sub>3</sub>–CA<sub>1</sub> synapses compared to vehicle-treated slices (black circles; F<sub>1,7</sub> = 0.209, <i>p</i> = 0.662). The horizontal bar indicates the period of perfusion with dynasore <i>after</i> tetanic stimulation. <b>C</b>, Basal synaptic transmission is unmodified by dynamin inhibition with dynasore. Averaged evoked field potential slopes as a function of stimulation intensity measured in volts (V) at CA<sub>3</sub>–CA<sub>1</sub> synapses in slices do not show significant differences between vehicle-treated (black circles) and dynasore (80 μM, open triangles) treated slices (F<sub>1,11</sub> = 40.081, <i>p</i> = 0.7013). <b>D</b>, Dynamin inhibition by dynasore (open triangles; 80 μm, 20 minute perfusion before the tetanus) does not produce changes in solely post-synaptic LTP induced by three tetani at 50 Hz for 1 second, each tetanus separated by 20 seconds, at the CA<sub>3</sub>–CA<sub>1</sub> synapse compared to vehicle-treated slices (black circles; F1,8 = 1.538, p = 0.250). The horizontal bar indicates the period of perfusion with dynasore before tetanic stimulation. Error bars indicate SEM.</p

    Dynamin inhibition by dynasore impairs associative memory.

    No full text
    <p><b>A</b>, Schematic representation of the hippocampi bilaterally implanted with cannulas. <b>B</b>, Bilateral injections of dynasore (80 μM in a final volume of 1.5 μl over 1 minute) into dorsal hippocampi, 20 minutes before training, dramatically impairs contextual fear memory (open bars) compared to vehicle treated mice (black bars) (Mann-Whitney U<sub>137, 73</sub> = 18.00, <i>p</i> = 0.00147). <b>C</b>, Mice do not show changes in cued fear conditioning following dynasore infusions (open bars) compared to vehicle-treated animals (black bars) (Mann-Whitney U<sub>121, 89</sub> = 34.00, <i>p</i> = 0.2412). Each bar represents the average percent of time spent in freezing posture. Error bars indicate SEM. <b>D</b>, Sensory threshold was not affected regardless of treatment (n = 10).</p
    • …
    corecore