7 research outputs found

    Modelling the Impact on Root Water Uptake and Solute Return Flow of Different Drip Irrigation Regimes with Brackish Water

    No full text
    Water scarcity and quality degradation represent real threats to economic, social, and environmental development of arid and semi-arid regions. Drip irrigation associated to Deficit Irrigation (DI) has been investigated as a water saving technique. Yet its environmental impacts on soil and groundwater need to be gone into in depth especially when using brackish irrigation water. Soil water content and salinity were monitored in a fully drip irrigated potato plot with brackish water (4.45 dSm−1) in semi-arid Tunisia. The HYDRUS-1D model was used to investigate the effects of different irrigation regimes (deficit irrigation (T1R, 70% ETc), full irrigation (T2R, 100% ETc), and farmer’s schedule (T3R, 237% ETc) on root water uptake, root zone salinity, and solute return flows to groundwater. The simulated values of soil water content (θ) and electrical conductivity of soil solution (ECsw) were in good agreement with the observation values, as indicated by mean RMSE values (≤0.008 m3·m−3, and ≤0.28 dSm−1 for soil water content and ECsw respectively). The results of the different simulation treatments showed that relative yield accounted for 54%, 70%, and 85.5% of the potential maximal value when both water and solute stress were considered for deficit, full. and farmer’s irrigation, respectively. Root zone salinity was the lowest and root water uptake was the same with and without solute stress for the treatment corresponding to the farmer’s irrigation schedule (273% ETc). Solute return flows reaching the groundwater were the highest for T3R after two subsequent rainfall seasons. Beyond the water efficiency of DI with brackish water, long term studies need to focus on its impact on soil and groundwater salinization risks under changing climate conditions

    Laboratory calibration and field validation of soil water content and salinity measurements using the 5TE sensor

    No full text
    Capacitance sensors are widely used in agriculture for irrigation and soil management purposes. However, their use under saline conditions is a major challenge, especially for sensors operating with low frequency. Their dielectric readings are often biased by high soil electrical conductivity. New calculation approaches for soil water content (θ) and pore water electrical conductivity (ECp), in which apparent soil electrical conductivity (ECa) is included, have been suggested in recent research. However, these methods have neither been tested with low-cost capacitance probes such as the 5TE (70 MHz, Decagon Devices, Pullman, WA, USA) nor for field conditions. Thus, it is important to determine the performance of these approaches and to test the application range using the 5TE sensor for irrigated soils. For this purpose, sandy soil was collected from the Jemna oasis in southern Tunisia and four 5TE sensors were installed in the field at four soil depths. Measurements of apparent dielectric permittivity (Ka), ECa, and soil temperature were taken under different electrical conductivity of soil moisture solutions. Results show that, under field conditions, 5TE accuracy for θ estimation increased when considering the ECa effect. Field calibrated models gave better θ estimation (root mean square error (RMSE) = 0.03 m3 m−3) as compared to laboratory experiments (RMSE = 0.06 m3 m−3). For ECp prediction, two corrections of the Hilhorst model were investigated. The first approach, which considers the ECa effect on K’ reading, failed to improve the Hilhorst model for ECp > 3 dS m−1 for both laboratory and field conditions. However, the second approach, which considers the effect of ECa on the soil parameter K0, increased the performance of the Hilhorst model and gave accurate measurements of ECp using the 5TE sensor for irrigated soil

    Evapotranspiration in Semi-Arid Climate : Remote Sensing vs. Soil Water Simulation

    No full text
    Estimating crop evapotranspiration (ETa) is an important requirement for a rational assessment and management of water resources. The various remote sensing products allow the determination of crops’ biophysical variables integrated in the evaluation of ETa by using surface energy balance (SEB) models. This study compares ETa estimated by the simplified surface energy balance index (S-SEBI) using Landsat 8 optical and thermal infra-red spectral bands and transit model HYDRUS-1D. In semi-arid Tunisia, real time measurements of soil water content (θ) and pore electrical conductivity (ECp) were made in the crop root zone using capacitive sensors (5TE) for rainfed and drip irrigated crops (barley and potato). Results show that HYDRUS model is a fast and cost-effective assessment tool for water flow and salt movement in the crop root layer. ETa estimated by S-SEBI varies according to the available energy resulting from the difference between the net radiation and soil flux G0, and more specifically according to the assessed G0 from remote sensing. Compared to HYDRUS, the ETa from S-SEBI was estimated to have an R2 of 0.86 and 0.70 for barley and potato, respectively. The S-SEBI performed better for rainfed barley (RMSE between 0.35 and 0.46 mm·d−1) than for drip irrigated potato (RMSE between 1.5 and 1.9 mm·d−1)

    The uncertainty associated with the use of copulas in multivariate analysis

    No full text
    The dependency structure between hydrological variables is of critical importance to hydrological modelling and forecasting. When a copula capturing that dependence is fitted to a sample, information on the uncertainty of the fit is needed for subsequent hydrological calculations and reasoning. A new method is proposed to report inferential uncertainty in a copula parameter. The method is based on confidence curves constructed with the use of a pseudo maximum likelihood estimator for the copula parameter. The method was tested on synthetic data and then used as a tool in two hydrological examples. The first examines the probability of major floods in two locations on the Rhine River and its tributaries in the same calendar year. In the second example, rainfall–runoff from a karst region in Tunisia was analysed to determine a confidence interval for the delay between precipitation and runoff.Water ResourcesTeam Bart De Schutte

    Impact of climate change on groundwater level dynamics and karst spring discharge of several karst systems in the Mediterranean area

    No full text
    International audienceAnthropogenic activities and climate change exert significant pressures on the quality and availability of water resources in karst environments, which supply drinking water to about 9.2% of the world's population. Increasing temperatures and changes in precipitation regimes will strongly impact water recharge processes. Understanding the karst hydrodynamic behaviour in the present context of climate change constitutes a major challenge for a sustainable management of karst groundwater. This study focuses on the Mediterranean area, where up to 90% of the drinking water supply depends on carbonate aquifers. The spring discharge and/or water level of six karst systems in the Mediterranean area (France, Italy, Lebanon, Slovenia, Spain and Tunisia) are simulated using precipitation-discharge reservoir modelling tools. The studied karst systems are well known and have different characteristics in terms of climatic conditions, hydrogeological properties and available data. Using different model structures, the hydrological models are first calibrated and validated over a historical period and then used to simulate spring discharge time series under various climate projections (up to 2100). To account for uncertainties in climate projection, 12 coupled GCM/RCM climate models are considered with two emission scenarios (RCP 4.5 and RCP 8.5) proposed in the framework of the CMIP5 initiative. The analysis of the forecasted spring discharge and water level time series focuses on (i) the long-term trends in the hydrological functioning of karst systems, (ii) the effects of climate change on spring discharges (intensity and duration of extreme events), and (iii) the study of uncertainties related to the exceedance of the known functioning ranges of the systems. Further discussion is also dedicated to model uncertainties in relation to model parameters and structure, climate models, and the estimation of potential evapotranspiration in future climate. This research has been conducted within the KARMA (Karst Aquifer Resources availability and quality in the Mediterranean Area) project into the PRIMA (Partnership for Research and Innovation in the Mediterranean Area) EU program
    corecore