368 research outputs found

    Oblique electromagnetic instabilities for an ultra relativistic electron beam passing through a plasma

    Full text link
    We present an investigation of the electromagnetic instabilities which are trig gered when an ultra relativistic electron beam passes through a plasma. The linear growth rate is computed for every direction of propagation of the unstable modes, and temperatures are modelled using simple waterbag distribution functions. The ultra relativistic unstable spectrum is located around a very narrow band centered on a critical angle which value is given analytically. The growth rate of modes propagating in this direction decreases like k^(-1/3).Comment: 5 pages, 3 figures, to appear in EuroPhysics Letter

    Spectral density in resonance region and analytic confinement

    Get PDF
    We study the role of finite widths of resonances in a nonlocal version of the Wick-Cutkosky model. The spectrum of bound states is known analytically in this model and forms linear Regge tragectories. We compute the widths of resonances, calculate the spectral density in an extension of the Breit-Wigner {\it ansatz} and discuss a mechanism for the damping of unphysical exponential growth of observables at high energy due to finite widths of resonances.Comment: 13 pages, RevTeX, 6 figures. Revised version with typographical corrections and additional comments in conclusion

    Time Delay Between Dst Index and Magnetic Storm Related Structure in the Solar Wind

    Get PDF
    Benson et al. (2015, this volume) selected 10 large magnetic storms, with associated Dst minimum values less than or equal to -100 nT, for which high-latitude topside ionospheric electron density profiles are available from topside-sounder satellites. For these 10 storms, we performed a superposition of Dst and interplanetary parameters B, v, N(sub p) and T(sub p). We have found that two interplanetary parameters, namely B and v, are sufficient to reproduce Dst with correlation coefficient cc approximately 0.96 provided that the interplanetary parameter times are taken 0.15 days earlier than the associated Dst times. Thus we have found which part of the solar wind is responsible for each phase of the magnetic storm. This result is also verified for individual storms as well. The total duration of SRS (storm related structure in the solar wind) is 4 - 5 days which is the same as the associated Dst interval of the magnetic storm

    PCT, spin and statistics, and analytic wave front set

    Full text link
    A new, more general derivation of the spin-statistics and PCT theorems is presented. It uses the notion of the analytic wave front set of (ultra)distributions and, in contrast to the usual approach, covers nonlocal quantum fields. The fields are defined as generalized functions with test functions of compact support in momentum space. The vacuum expectation values are thereby admitted to be arbitrarily singular in their space-time dependence. The local commutativity condition is replaced by an asymptotic commutativity condition, which develops generalizations of the microcausality axiom previously proposed.Comment: LaTeX, 23 pages, no figures. This version is identical to the original published paper, but with corrected typos and slight improvements in the exposition. The proof of Theorem 5 stated in the paper has been published in J. Math. Phys. 45 (2004) 1944-195

    Non-Localizability and Asymptotic Commutativity

    Full text link
    The mathematical formalism commonly used in treating nonlocal highly singular interactions is revised. The notion of support cone is introduced which replaces that of support for nonlocalizable distributions. Such support cones are proven to exist for distributions defined on the Gelfand-Shilov spaces SβS^\beta, where 0<β<10<\beta <1 . This result leads to a refinement of previous generalizations of the local commutativity condition to nonlocal quantum fields. For string propagators, a new derivation of a representation similar to that of K\"{a}llen-Lehmann is proposed. It is applicable to any initial and final string configurations and manifests exponential growth of spectral densities intrinsic in nonlocalizable theories.Comment: This version is identical to the initial one whose ps and pdf files were unavailable, with few corrections of misprint

    Diffusive Radiation in One-dimensional Langmuir Turbulence

    Full text link
    We calculate spectra of radiation produced by a relativistic particle in the presence of one-dimensional Langmuir turbulence which might be generated by a streaming instability in the plasma, in particular, in the shock front or at the shock-shock interactions. The shape of the radiation spectra is shown to depend sensitively on the angle between the particle velocity and electric field direction. The radiation spectrum in the case of exactly transverse particle motion is degenerate and similar to that of spatially uniform Langmuir oscillations. In case of oblique propagation, the spectrum is more complex, it consists of a number of power-law regions and may contain a distinct high-frequency spectral peak. %at \omega=2\omega\pe \gamma^2. The emission process considered is relevant to various laboratory plasma settings and for astrophysical objects as gamma-ray bursts and collimated jets.Comment: 4 pages, 1 figure, accepted for Phys. Rev.

    Coherent charge transport through molecular wires: "Exciton blocking" and current from electronic excitations in the wire

    Full text link
    We consider exciton effects on current in molecular nanojunctions, using a model comprising a two two-level sites bridge connecting free electron reservoirs. Expanding the density operator in the many-electron eigenstates of the uncoupled sites, we obtain a 16X16 density matrix in the bridge subspace whose dynamics is governed by Liuoville equation that takes into account interactions on the bridge as well as electron injection and damping to and from the leads. Our consideration can be considerably simplified by using the pseudospin description based on the symmetry properties of Lie group SU(2). We study the influence of the bias voltage, the Coulomb repulsion and the energy-transfer interactions on the steady-state current and in particular focus on the effect of the excitonic interaction between bridge sites. Our calculations show that in case of non-interacting electrons this interaction leads to reduction in the current at high voltage for a homodimer bridge. In other words, we predict the effect of \textquotedblleft exciton\textquotedblright blocking. The effect of \textquotedblleft exciton\textquotedblright blocking is modified for a heterodimer bridge, and disappears for strong Coulomb repulsion at sites. In the latter case the exciton type interactions can open new channels for electronic conduction. In particular, in the case of strong Coulomb repulsion, conduction exists even when the electronic connectivity does not exist.Comment: 14 pages, 15 figure

    Spin 1 fields in Riemann-Cartan space-times "via" Duffin-Kemmer-Petiau theory

    Get PDF
    We consider massive spin 1 fields, in Riemann-Cartan space-times, described by Duffin-Kemmer-Petiau theory. We show that this approach induces a coupling between the spin 1 field and the space-time torsion which breaks the usual equivalence with the Proca theory, but that such equivalence is preserved in the context of the Teleparallel Equivalent of General Relativity.Comment: 8 pages, no figures, revtex. Dedicated to Professor Gerhard Wilhelm Bund on the occasion of his 70th birthday. To appear in Gen. Rel. Grav. Equations numbering corrected. References update

    Pseudoclassical description of scalar particle in non-Abelian background and path-integral representations

    Full text link
    Path-integral representations for a scalar particle propagator in non-Abelian external backgrounds are derived. To this aim, we generalize the procedure proposed by Gitman and Schvartsman 1993 of path-integral construction to any representation of SU(N) given in terms of antisymmetric generators. And for arbitrary representations of SU(N), we present an alternative construction by means of fermionic coherent states. From the path-integral representations we derive pseudoclassical actions for a scalar particle placed in non-Abelian backgrounds. These actions are classically analyzed and then quantized to prove their consistency
    corecore