98 research outputs found

    Effect of knocking down the insulin receptor on mouse rod responses.

    Get PDF
    Previous experiments have shown that the insulin receptor (IR) is expressed in mammalian rods and contributes to the protection of photoreceptors during bright-light exposure. The role of the insulin receptor in the production of the light response is however unknown. We have used suction-electrode recording to examine the responses of rods after conditionally knocking down the insulin receptor. Our results show that these IR knock-down rods have an accelerated decay of the light response and a small decrease in sensitivity by comparison to littermate WT rods. Our results indicate that the insulin receptor may have some role in controlling the rate of rod response decay, but they exclude a major role of the insulin receptor pathway in phototransduction

    Setting the absolute threshold of vision

    Get PDF
    The performance of sensory systems in many cases is limited by the physical nature of the stimulus. For vision, the quantal nature of light limits detection by dark-adapted observers; only now are we beginning to be aware of the subtleties in the biophysical mechanisms underlying this exquisite sensitivity

    Blue light regenerates functional visual pigments in mammals through a retinyl-phospholipid intermediate.

    Get PDF
    The light absorbing chromophore in opsin visual pigments is the protonated Schiff base of 11-cis-retinaldehyde (11cRAL). Absorption of a photon isomerizes 11cRAL to all-trans-retinaldehyde (atRAL), briefly activating the pigment before it dissociates. Light sensitivity is restored when apo-opsin combines with another 11cRAL to form a new visual pigment. Conversion of atRAL to 11cRAL is carried out by enzyme pathways in neighboring cells. Here we show that blue (450-nm) light converts atRAL specifically to 11cRAL through a retinyl-phospholipid intermediate in photoreceptor membranes. The quantum efficiency of this photoconversion is similar to rhodopsin. Photoreceptor membranes synthesize 11cRAL chromophore faster under blue light than in darkness. Live mice regenerate rhodopsin more rapidly in blue light. Finally, whole retinas and isolated cone cells show increased photosensitivity following exposure to blue light. These results indicate that light contributes to visual-pigment renewal in mammalian rods and cones through a non-enzymatic process involving retinyl-phospholipids.It is currently thought that visual pigments in vertebrate photoreceptors are regenerated exclusively through enzymatic cycles. Here the authors show that mammalian photoreceptors also regenerate opsin pigments in light through photoisomerization of N-ret-PE (N-retinylidene-phosphatidylethanolamine

    Rhodopsin kinase and recoverin modulate phosphodiesterase during mouse photoreceptor light adaptation

    Full text link
    Light stimulates rhodopsin in a retinal rod to activate the G protein transducin, which binds to phosphodiesterase (PDE), relieving PDE inhibition and decreasing guanosine 3′,5′-cyclic monophosphate (cGMP) concentration. The decrease in cGMP closes outer segment channels, producing the rod electrical response. Prolonged exposure to light decreases sensitivity and accelerates response kinetics in a process known as light adaptation, mediated at least in part by a decrease in outer segment Ca(2+). Recent evidence indicates that one of the mechanisms of adaptation in mammalian rods is down-regulation of PDE. To investigate the effect of light and a possible role of rhodopsin kinase (G protein–coupled receptor kinase 1 [GRK1]) and the GRK1-regulating protein recoverin on PDE modulation, we used transgenic mice with decreased expression of GTPase-accelerating proteins (GAPs) and, consequently, a less rapid decay of the light response. This slowed decay made the effects of genetic manipulation of GRK1 and recoverin easier to observe and interpret. We monitored the decay of the light response and of light-activated PDE by measuring the exponential response decay time (τ(REC)) and the limiting time constant (τ(D)), the latter of which directly reflects light-activated PDE decay under the conditions of our experiments. We found that, in GAP-underexpressing rods, steady background light decreased both τ(REC) and τ(D), and the decrease in τ(D) was nearly linear with the decrease in amplitude of the outer segment current. Background light had little effect on τ(REC) or τ(D) if the gene for recoverin was deleted. Moreover, in GAP-underexpressing rods, increased GRK1 expression or deletion of recoverin produced large and highly significant accelerations of τ(REC) and τ(D). The simplest explanation of our results is that Ca(2+)-dependent regulation of GRK1 by recoverin modulates the decay of light-activated PDE, and that this modulation is responsible for acceleration of response decay and the increase in temporal resolution of rods in background light

    Single-molecule experiments in biological physics: methods and applications

    Full text link
    I review single-molecule experiments (SME) in biological physics. Recent technological developments have provided the tools to design and build scientific instruments of high enough sensitivity and precision to manipulate and visualize individual molecules and measure microscopic forces. Using SME it is possible to: manipulate molecules one at a time and measure distributions describing molecular properties; characterize the kinetics of biomolecular reactions and; detect molecular intermediates. SME provide the additional information about thermodynamics and kinetics of biomolecular processes. This complements information obtained in traditional bulk assays. In SME it is also possible to measure small energies and detect large Brownian deviations in biomolecular reactions, thereby offering new methods and systems to scrutinize the basic foundations of statistical mechanics. This review is written at a very introductory level emphasizing the importance of SME to scientists interested in knowing the common playground of ideas and the interdisciplinary topics accessible by these techniques. The review discusses SME from an experimental perspective, first exposing the most common experimental methodologies and later presenting various molecular systems where such techniques have been applied. I briefly discuss experimental techniques such as atomic-force microscopy (AFM), laser optical tweezers (LOT), magnetic tweezers (MT), biomembrane force probe (BFP) and single-molecule fluorescence (SMF). I then present several applications of SME to the study of nucleic acids (DNA, RNA and DNA condensation), proteins (protein-protein interactions, protein folding and molecular motors). Finally, I discuss applications of SME to the study of the nonequilibrium thermodynamics of small systems and the experimental verification of fluctuation theorems. I conclude with a discussion of open questions and future perspectives.Comment: Latex, 60 pages, 12 figures, Topical Review for J. Phys. C (Cond. Matt

    Light responses of mammalian cones

    No full text

    A LESBIAN ENDING IN THE ODES

    No full text

    APOSTROPHE AND ΣΦPHΓIΣ IN THE THEOGNIDEAN SYLLOGE

    No full text

    The evolution of rod photoreceptors

    No full text
    Photoreceptors in animals are generally of two kinds: the ciliary or c-type and the rhabdomeric or r-type. Although ciliary photoreceptors are found in many phyla, vertebrates seem to be unique in having two distinct kinds which together span the entire range of vision, from single photons to bright light. We ask why the principal photoreceptors of vertebrates are ciliary and not rhabdomeric, and how rods evolved from less sensitive cone-like photoreceptors to produce our duplex retina. We suggest that the principal advantage of vertebrate ciliary receptors is that they use less ATP than rhabdomeric photoreceptors. This difference may have provided sufficient selection pressure for the development of a completely ciliary eye. Although many of the details of rod evolution are still uncertain, present evidence indicates that (i) rods evolved very early before the split between the jawed and jawless vertebrates, (ii) outer-segment discs make no contribution to rod sensitivity but may have evolved to increase the efficiency of protein renewal, and (iii) evolution of the rod was incremental and multifaceted, produced by the formation of several novel protein isoforms and by changes in protein expression, with no one alteration having more than a few-fold effect on transduction activation or inactivation.This article is part of the themed issue 'Vision in dim light'
    • …
    corecore