46 research outputs found

    Seasonal Variations of the 7Be Solar Neutrino Flux

    Full text link
    Measuring the 7Be solar neutrino flux is crucial towards solving the solar neutrino puzzle. The Borexino experiment, and possibly the KamLAND experiment, will be capable of studying the 7Be neutrinos in the near future. We discuss (1) how the seasonal variation of the Borexino and KamLAND data can be used to measure the 7Be solar neutrino flux in a background independent way and (2) how anomalous seasonal variations might be used to discover vacuum neutrino oscillations, independent of the solar model and the measurement of the background. In particular, we find that, after three years of Borexino or KamLAND running, vacuum neutrino oscillations can be either established or excluded for almost all values of (sin^2 2 theta, Delta m^2) preferred by the Homestake, GALLEX, SAGE, and Super-Kamiokande data. We also discuss how well seasonal variations of the data can be used to measure (sin^2 2 theta, Delta m^2) in the case of vacuum oscillations.Comment: 39 pages, 13 figures, uses psfig. Now the impact of the MSW effect on vacuum oscillations taken into account. Conclusions unchanged. References adde

    Solar neutrinos and grand unification

    Full text link
    We consider the Grand Unification (GU) scenario for neutrino masses which is based on the see-saw mechanism with the mass of the heaviest right handed (RH) neutrino at the GU-scale: M3ΛGUM_3 \sim \Lambda_{GU}, and on the quark-lepton symmetry for fermions from the third generation. The scenario predicts for the light neutrinos: m3(24)103m_3 \sim (2 - 4) \cdot 10^{-3} eV and m2(0.33)105m_2 \sim (0.3 - 3) \cdot 10^{-5} eV (in the case of a linear mass hierarchy of the RH neutrinos or/and in presence of the Planck scale suppressed non-renormalizable operators). It also predicts large νeνμ\nu_e - \nu_{\mu} mixing:  sin22θeμ>0.2~\sin^2 2\theta_{e\mu} \stackrel{_>}{_\sim} 0.2. In this scenario the solar neutrinos (ν\nu_{\odot}) undergo both the \nue \to \nutau resonance conversion in the Sun and substantial \nue \to \numu vacuum oscillations on the way from the Sun to the Earth. The interplay of both effects enlarges the range of neutrino parameters which solve the ν\nu_{\odot}-problem. In particular, νeντ\nu_e - \nu_{\tau} mixing angle can be as small as the corresponding quark mixing: sin22θeτ(2  5)104\sin^2 2\theta_{e\tau} \geq (2~-~5) \cdot 10^{-4}. The scenario predicts peculiar (oscillatory) distortion of the boron neutrino energy spectrum and seasonal variations of signals. Manifestations of these effects in the Super-Kamiokande and SNO experiments are studied.Comment: 36 pages, LaTeX, includes 14 figures, revised and expande

    Quantum dynamics in strong fluctuating fields

    Full text link
    A large number of multifaceted quantum transport processes in molecular systems and physical nanosystems can be treated in terms of quantum relaxation processes which couple to one or several fluctuating environments. A thermal equilibrium environment can conveniently be modelled by a thermal bath of harmonic oscillators. An archetype situation provides a two-state dissipative quantum dynamics, commonly known under the label of a spin-boson dynamics. An interesting and nontrivial physical situation emerges, however, when the quantum dynamics evolves far away from thermal equilibrium. This occurs, for example, when a charge transferring medium possesses nonequilibrium degrees of freedom, or when a strong time-dependent control field is applied externally. Accordingly, certain parameters of underlying quantum subsystem acquire stochastic character. Herein, we review the general theoretical framework which is based on the method of projector operators, yielding the quantum master equations for systems that are exposed to strong external fields. This allows one to investigate on a common basis the influence of nonequilibrium fluctuations and periodic electrical fields on quantum transport processes. Most importantly, such strong fluctuating fields induce a whole variety of nonlinear and nonequilibrium phenomena. A characteristic feature of such dynamics is the absence of thermal (quantum) detailed balance.Comment: review article, Advances in Physics (2005), in pres

    Global Analysis with SNO: Toward the Solution of the Solar Neutrino Problem

    Full text link
    We perform a global analysis of the latest solar neutrino data including the SNO result on the CC-event rate. This result further favors the LMA solution of the solar neutrino problem. The best fit values of parameters we find are: \Delta m^2 = (4.8 - 5.0)10^{-5} eV^2, tan^2 \theta = 0.35 - 0.38, f_B = 1.08 - 1.12, and f_{hep} = 1 - 4. With respect to this best fit the LOW solution is accepted at 90% C.L.. The Vacuum oscillation solution with \Delta m^2 = 1.4 10^{-10} eV^2, gives good fit of the data provided that the boron neutrino flux is substantially smaller than the SSM flux (f_B \sim 0.5). The SMA solution is accepted only at 3\sigma level. We find that vacuum oscillations to sterile neutrino, VAC(sterile), with f_B \sim 0.5 also give rather good global fit of the data. All other sterile solutions are strongly disfavored. We check the quality of the fit by constructing the pull-off diagrams of observables. Predictions for the day-night asymmetry, spectrum distortion and NC/CC ratio at SNO are calculated. In the best fit points of the global solutions we find: A_{DN}^{CC} \approx (7 - 8)% for LMA, \sim 3% for LOW, and (2 - 3)% for SMA. It will be difficult to see the distortion of the spectrum expected for LMA as well as LOW solutions. However, future SNO spectral data can significantly affect the VAC and SMA solutions. We also calculate expectations for the BOREXINO rate.Comment: 35 pages, latex, 9 figures; results of analysis slightly changed due to different treatment of the hep neutrino flux; predictions for NC/CC ratio and Borexino rate adde

    Common Hierarchical Lepton Mass Textures for Atmospheric and Solar Neutrino Oscillations

    Get PDF
    We propose and study a common hierarchical mass texture for both charged lepton and neutrino sectors. The texture gives rise to a large νμντ\nu_\mu\leftrightarrow\nu_\tau mixing. Also it leads to the small angle MSW effect solution for solar neutrino data. It naturally gives a small νeντ\nu_e\leftrightarrow \nu_\tau oscillation relevant to the CHOOZ result in certain mass limits.Comment: 11 pages, no figures, late

    Global Three-Neutrino Vacuum Oscillation fits to the Solar and Atmospheric Anomalies

    Full text link
    We determine the three-neutrino mixing and mass parameters that are allowed by the solar and atmospheric neutrino data when vacuum oscillations are responsible for both phenomena. The global fit does not appreciably change the allowed regions for the parameters obtained from effective two-neutrino fits. We discuss how measurements of the solar electron energy spectrum below 6.5 GeV in Super-Kamiokande and seasonal variations in the Super-Kamiokande, 71^{71}Ga, and BOREXINO experiments can distinguish the different solar vacuum solutions.Comment: Revtex, 31 pages, uses epsf.sty, 14 postscript figures. Version to be published in Phys. Rev.

    The Hemopoietic Stem Cell Niche Versus the Microenvironment of the Multiple Myeloma-Tumor Initiating Cell

    Get PDF
    Multiple myeloma cells are reminiscent of hemopoietic stem cells in their strict dependence upon the bone marrow microenvironment. However, from all other points of view, multiple myeloma cells differ markedly from stem cells. The cells possess a mature phenotype and secrete antibodies, and have thus made the whole journey to maturity, while maintaining a tumor phenotype. Not much credence was given to the possibility that the bulk of plasma-like multiple myeloma tumor cells is generated from tumor-initiating cells. Although interleukin-6 is a major contributor to the formation of the tumor’s microenvironment in multiple myeloma, it is not a major factor within hemopoietic stem cell niches. The bone marrow niche for myeloma cells includes the activity of inflammatory cytokines released through osteoclastogenesis. These permit maintenance of myeloma cells within the bone marrow. In contrast, osteoclastogenesis constitutes a signal that drives hemopoietic stem cells away from their bone marrow niches. The properties of the bone marrow microenvironment, which supports myeloma cell maintenance and proliferation, is therefore markedly different from the characteristics of the hemopoietic stem cell niche. Thus, multiple myeloma presents an example of a hemopoietic tumor microenvironment that does not resemble the corresponding stem cell renewal niche
    corecore