1,613 research outputs found

    Variational quantum Monte Carlo calculations for solid surfaces

    Full text link
    Quantum Monte Carlo methods have proven to predict atomic and bulk properties of light and non-light elements with high accuracy. Here we report on the first variational quantum Monte Carlo (VMC) calculations for solid surfaces. Taking the boundary condition for the simulation from a finite layer geometry, the Hamiltonian, including a nonlocal pseudopotential, is cast in a layer resolved form and evaluated with a two-dimensional Ewald summation technique. The exact cancellation of all Jellium contributions to the Hamiltonian is ensured. The many-body trial wave function consists of a Slater determinant with parameterized localized orbitals and a Jastrow factor with a common two-body term plus a new confinement term representing further variational freedom to take into account the existence of the surface. We present results for the ideal (110) surface of Galliumarsenide for different system sizes. With the optimized trial wave function, we determine some properties related to a solid surface to illustrate that VMC techniques provide standard results under full inclusion of many-body effects at solid surfaces.Comment: 9 pages with 2 figures (eps) included, Latex 2.09, uses REVTEX style, submitted to Phys. Rev.

    Genetic risk for Huntington Disease and reproductive decision-making: A systematic review

    Get PDF
    Huntington Disease (HD) is an incurable autosomal dominant single gene neurodegenerative disorder. Typical onset is between 30 and 40 years and characterised by motor difficulties, cognitive impairment, and behavioural and personality changes. The availability of reproductive testing means that affected and at-risk individuals can make reproductive decisions with genetic risk in mind. We aimed to summarise the literature on reproductive decision-making in the context of HD risk in terms of outcomes and the subjective experiences of at-risk individuals. Five databases were searched. Findings were synthesised using Framework analysis to identify common factors across results of quantitative and qualitative studies. Twenty five studies met inclusion criteria. Framework analysis identified the following key areas: ‘The relationship between reproductive intentions and HD genetic risk’, ‘Views on assistive options’, ‘Complexity and challenges in reproductive decision-making’, ‘Actual reproductive outcomes’, and ‘Other factors influencing reproductive decision-making’. Quality of included studies was mixed. Reproductive decision making in the context of HD risk was found to be a complex and emotionally challenging process. Further research is required into reproductive decision-making and outcomes among those not utilising assistive options, and in developing a model of reproductive decision-making in HD

    An Assessment of the Commission’s Proposal on Privacy and Electronic Communications:Study for the LIBE Committee

    Get PDF

    Adaptive Sampling Approach to the Negative Sign Problem in the Auxiliary Field Quantum Monte Carlo Method

    Full text link
    We propose a new sampling method to calculate the ground state of interacting quantum systems. This method, which we call the adaptive sampling quantum monte carlo (ASQMC) method utilises information from the high temperature density matrix derived from the monte carlo steps. With the ASQMC method, the negative sign ratio is greatly reduced and it becomes zero in the limit Δτ\Delta \tau goes to zero even without imposing any constraint such like the constraint path (CP) condition. Comparisons with numerical results obtained by using other methods are made and we find the ASQMC method gives accurate results over wide regions of physical parameters values.Comment: 8 pages, 7 figure

    Finite-Temperature Monte Carlo Calculations For Systems With Fermions

    Full text link
    We present a quantum Monte Carlo method which allows calculations on many-fermion systems at finite temperatures without any sign decay. This enables simulations of the grand-canonical ensemble at large system sizes and low temperatures. Both diagonal and off-diagonal expectations can be computed straightforwardly. The sign decay is eliminated by a constraint on the fermion determinant. The algorithm is approximate. Tests on the Hubbard model show that accurate results on the energy and correlation functions can be obtained.Comment: 5 pages, RevTex; to appear in Phys. Rev. Let

    Correlation effects in a quantum dot at high magnetic fields

    Full text link
    We investigate the effects of electron correlations on the ground state energy and the chemical potential of a droplet confined by a parabolic potential at high magnetic fields. We demonstrate the importance of correlations in estimating the transition field at which the first edge reconstruction of the maximum density droplet occurs in the spin polarized regime.Comment: 11 pages (revtex) 3 postscript figures are included at the end of the tex file. To appear in Phys. Rev.
    • …
    corecore