488 research outputs found
Semiparametric Bayesian models for human brain mapping
Functional magnetic resonance imaging (fMRI) has led to enormous progress in human brain mapping. Adequate analysis of the massive spatiotemporal data sets generated by this imaging technique, combining parametric and non-parametric components, imposes challenging problems in statistical modelling. Complex hierarchical Bayesian models in combination with computer-intensive Markov chain Monte Carlo inference are promising tools.The purpose of this paper is twofold. First, it provides a review of general semiparametric Bayesian models for the analysis of fMRI data. Most approaches focus on important but separate temporal or spatial aspects of the overall problem, or they proceed by stepwise procedures. Therefore, as a second aim, we suggest a complete spatiotemporal model for analysing fMRI data within a unified semiparametric Bayesian framework. An application to data from a visual stimulation experiment illustrates our approach and demonstrates its computational feasibility
Structured count data regression
Overdispersion in count data regression is often caused by neglection or inappropriate modelling of individual heterogeneity, temporal or spatial correlation, and nonlinear covariate effects. In this paper, we develop and study semiparametric count data models which can deal with these issues by incorporating corresponding components in structured additive form into the predictor. The models are fully Bayesian and inference is carried out by computationally efficient MCMC techniques. In a simulation study, we investigate how well the different components can be identified with the data at hand. The approach is applied to a large data set of claim frequencies from car insurance
Regression analysis of forest damage by marginal models for correlated ordinal responses
Studies on forest damage can generally not be carried out by common regression models, mainly for two reasons: Firstly, the response variable, damage state of trees, is usually observed in ordered categories. Secondly, responses are often correlated, either serially, as in a longitudinal study, or spatially, as in the application of this paper, where neighborhood interactions exist between damage states of spruces determined from aerial pictures. Thus so-called marginal regression models for ordinal responses, taking into account dependence among observations, are appropriate for correct inference. To this end we extend the binary models of Liang and Zeger (1986) and develop an ordinal GEE1 model, based on parametrizing association by global cross-ratios. The methods are applied to data from a survey conducted in Southern Germany. Due to the survey design, responses must be assumed to be spatially correlated. The results show that the proposed ordinal marginal regression models provide appropriate tools for analyzing the influence of covariates, that characterize the stand, on the damage state of spruce
Spike-and-Slab Priors for Function Selection in Structured Additive Regression Models
Structured additive regression provides a general framework for complex
Gaussian and non-Gaussian regression models, with predictors comprising
arbitrary combinations of nonlinear functions and surfaces, spatial effects,
varying coefficients, random effects and further regression terms. The large
flexibility of structured additive regression makes function selection a
challenging and important task, aiming at (1) selecting the relevant
covariates, (2) choosing an appropriate and parsimonious representation of the
impact of covariates on the predictor and (3) determining the required
interactions. We propose a spike-and-slab prior structure for function
selection that allows to include or exclude single coefficients as well as
blocks of coefficients representing specific model terms. A novel
multiplicative parameter expansion is required to obtain good mixing and
convergence properties in a Markov chain Monte Carlo simulation approach and is
shown to induce desirable shrinkage properties. In simulation studies and with
(real) benchmark classification data, we investigate sensitivity to
hyperparameter settings and compare performance to competitors. The flexibility
and applicability of our approach are demonstrated in an additive piecewise
exponential model with time-varying effects for right-censored survival times
of intensive care patients with sepsis. Geoadditive and additive mixed logit
model applications are discussed in an extensive appendix
Inference of demographic history from genealogical trees using reversible jump Markov chain Monte Carlo
Background: Coalescent theory is a general framework to model genetic variation in a population. Specifically, it allows inference about population parameters from sampled DNA sequences. However, most currently employed variants of coalescent theory only consider very simple demographic scenarios of population size changes, such as exponential growth. Results: Here we develop a coalescent approach that allows Bayesian non-parametric estimation of the demographic history using genealogies reconstructed from sampled DNA sequences. In this framework inference and model selection is done using reversible jump Markov chain Monte Carlo (MCMC). This method is computationally efficient and overcomes the limitations of related non-parametric approaches such as the skyline plot. We validate the approach using simulated data. Subsequently, we reanalyze HIV-1 sequence data from Central Africa and Hepatitis C virus (HCV) data from Egypt. Conclusions: The new method provides a Bayesian procedure for non-parametric estimation of the demographic history. By construction it additionally provides confidence limits and may be used jointly with other MCMC-based coalescent approaches
Geo-additive modelling of malaria in Burundi
Abstract Background Malaria is a major public health issue in Burundi in terms of both morbidity and mortality, with around 2.5 million clinical cases and more than 15,000 deaths each year. It is still the single main cause of mortality in pregnant women and children below five years of age. Because of the severe health and economic burden of malaria, there is still a growing need for methods that will help to understand the influencing factors. Several studies/researches have been done on the subject yielding different results as which factors are most responsible for the increase in malaria transmission. This paper considers the modelling of the dependence of malaria cases on spatial determinants and climatic covariates including rainfall, temperature and humidity in Burundi. Methods The analysis carried out in this work exploits real monthly data collected in the area of Burundi over 12 years (1996-2007). Semi-parametric regression models are used. The spatial analysis is based on a geo-additive model using provinces as the geographic units of study. The spatial effect is split into structured (correlated) and unstructured (uncorrelated) components. Inference is fully Bayesian and uses Markov chain Monte Carlo techniques. The effects of the continuous covariates are modelled by cubic p-splines with 20 equidistant knots and second order random walk penalty. For the spatially correlated effect, Markov random field prior is chosen. The spatially uncorrelated effects are assumed to be i.i.d. Gaussian. The effects of climatic covariates and the effects of other spatial determinants are estimated simultaneously in a unified regression framework. Results The results obtained from the proposed model suggest that although malaria incidence in a given month is strongly positively associated with the minimum temperature of the previous months, regional patterns of malaria that are related to factors other than climatic variables have been identified, without being able to explain them. Conclusions In this paper, semiparametric models are used to model the effects of both climatic covariates and spatial effects on malaria distribution in Burundi. The results obtained from the proposed models suggest a strong positive association between malaria incidence in a given month and the minimum temperature of the previous month. From the spatial effects, important spatial patterns of malaria that are related to factors other than climatic variables are identified. Potential explanations (factors) could be related to socio-economic conditions, food shortage, limited access to health care service, precarious housing, promiscuity, poor hygienic conditions, limited access to drinking water, land use (rice paddies for example), displacement of the population (due to armed conflicts).</p
Geo-additive models of Childhood Undernutrition in three Sub-Saharan African Countries
We investigate the geographical and socioeconomic determinants of childhood undernutrition in Malawi, Tanzania and Zambia, three neighboring countries in Southern Africa using the 1992 Demographic and Health Surveys. We estimate models of undernutrition jointly for the three countries to explore regional patterns of undernutrition that transcend boundaries, while allowing for country-specific interactions. We use semiparametric models to flexibly model the effects of selected so-cioeconomic covariates and spatial effects. Our spatial analysis is based on a flexible geo-additive model using the district as the geographic unit of anal-ysis, which allows to separate smooth structured spatial effects from random effect. Inference is fully Bayesian and uses recent Markov chain Monte Carlo techniques. While the socioeconomic determinants generally confirm what is known in the literature, we find distinct residual spatial patterns that are not explained by the socioeconomic determinants. In particular, there appears to be a belt run-ning from Southern Tanzania to Northeastern Zambia which exhibits much worse undernutrition, even after controlling for socioeconomic effects. These effects do transcend borders between the countries, but to a varying degree. These findings have important implications for targeting policy as well as the search for left-out variables that might account for these residual spatial patterns
Whole-History Rating: A Bayesian Rating System for Players of Time-Varying Strength
International audienceWhole-History Rating (WHR) is a new method to estimate the time-varying strengths of players involved in paired comparisons. Like many variations of the Elo rating system, the whole-history approach is based on the dynamic Bradley-Terry model. But, instead of using incremental approximations, WHR directly computes the exact maximum a posteriori over the whole rating history of all players. This additional accuracy comes at a higher computational cost than traditional methods, but computation is still fast enough to be easily applied in real time to large-scale game servers (a new game is added in less than 0.001 second). Experiments demonstrate that, in comparison to Elo, Glicko, TrueSkill, and decayed-history algorithms, WHR produces better predictions
- …