4 research outputs found

    Design of a Multi-Color Plenoptic Camera for Snapshot Hyperspectral Imaging

    Get PDF
    The design of a custom camera lens including: a two-lens optical system, filter array, and iris has been developed enabling a greyscale plenoptic camera to acquire full field-of-view, 2D, instantaneous hyperspectral measurements. This work focuses on the use of 7 discrete color filters and their effect on the image quality. It was determined that the placement of the filters inside the aperture plane of the camera was paramount to mitigating image artifacts. In addition, design rules were developed such that the optimal optical parameters (image distance, working distance, and focal length) can be easily determined from a few charts

    Comparison of Stereo-PIV and Plenoptic-PIV Measurements on the Wake of a Cylinder in NASA Ground Test Facilities.

    Get PDF
    A series of comparison experiments have been performed using a single-camera plenoptic PIV measurement system to ascertain the systems performance capabilities in terms of suitability for use in NASA ground test facilities. A proof-of-concept demonstration was performed in the Langley Advanced Measurements and Data Systems Branch 13-inch (33- cm) Subsonic Tunnel to examine the wake of a series of cylinders at a Reynolds number of 2500. Accompanying the plenoptic-PIV measurements were an ensemble of complementary stereo-PIV measurements. The stereo-PIV measurements were used as a truth measurement to assess the ability of the plenoptic-PIV system to capture relevant 3D/3C flow field features in the cylinder wake. Six individual tests were conducted as part of the test campaign using three different cylinder diameters mounted in two orientations in the tunnel test section. This work presents a comparison of measurements with the cylinders mounted horizontally (generating a 2D flow field in the x-y plane). Results show that in general the plenoptic-PIV measurements match those produced by the stereo-PIV system. However, discrepancies were observed in extracted pro les of the fuctuating velocity components. It is speculated that spatial smoothing of the vector fields in the stereo-PIV system could account for the observed differences. Nevertheless, the plenoptic-PIV system performed extremely well at capturing the flow field features of interest and can be considered a viable alternative to traditional PIV systems in smaller NASA ground test facilities with limited optical access

    Laser Light Sheet Flow Visualization of the Space Launch System Booster Separation Test

    Get PDF
    Planar flow visualizations were obtained in a wind tunnel test in the NASA Langley Research Centers Unitary Plan Wind Tunnel using the laser-light-sheet method. This method uses a laser to illuminate fine particles generated in the wind tunnel to visualize flow structures. The test article was designed to simulate the separation of the two solid rocket boosters (SRBs) from the core stage of the NASA Space Launch System (SLS) at Mach 4 using a scale model. The test was run on of the SLS Block 1B Cargo (27005) configuration and the SLS Block 1B Crew (28005) configuration. Planar flow visualization was obtained only on the crew configuration. Air at pressures up to 1500 psi was used to simulate plumes from the booster separation motors (BSMs) located at the nose, and aft skirt of the two boosters. The facility free stream was seeded with water vapor, which condensed and froze into small ice crystals in the tunnel nozzle expansion. A continuous wave green (532 nm) laser sheet was used to illuminate the ice crystals, and the resulting Mie-scattered light was collected with a camera. The resulting images clearly identify shock waves and other flow features including BSM plume shapes. Measurements were acquired for different BSM pressures and booster separation locations

    What's in a Name? Would a Rose by Any Other Name Really Smell as Sweet?

    No full text
    corecore