54 research outputs found

    Declines in the energy content of yearling non‐native alewife associated with lower food web changes in Lake Michigan

    Full text link
    Juveniles of non‐native alewife, Alosa pseudoharengus (Wilson), were collected in Lake Michigan in 1998, 1999, 2010, 2011 and 2013 to evaluate changes in energy content during a period of major ecosystem changes. Consistent with historical data, energy content of yearling alewife declined from late winter into late spring and was at its lowest point in June. Energy density and length‐adjusted, entire‐body energy were lower in 2010, 2011 and 2013 than in 1998 and 1999. Energy losses over the first winter in the lake were more severe for the 2010 year class (56% decrease) than for the 1998 year class (28% decrease). Alewife diets in late spring of 2010–2013 reflected the loss of major prey such as Diporeia spp. and a shift towards lower energy prey. The recent decline in energy content of yearling alewife can be linked to recent changes in productivity and abundance of key components of the lower food web of Lake Michigan following the dreissenid invasion.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109567/1/fme12092.pd

    Small‐scale nutrient patchiness: Some consequences and a new encounter mechanism

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109816/1/lno19842940785.pd

    The importance of zooplankton‐protozoan trophic couplings in Lake Michigan

    Full text link
    Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/109824/1/lno19913671335.pd

    Spatial-temporal variability of in situ cyanobacteria vertical structure in Western Lake Erie: Implications for remote sensing observations

    Get PDF
    Remote sensing has provided expanded temporal and spatial range to the study of harmful algal blooms (cyanoHABs) in western Lake Erie, allowing for a greater understanding of bloom dynamics than is possible through in situ sampling. However, satellites are limited in their ability to specifically target cyanobacteria and can only observe the water within the first optical depth. This limits the ability of remote sensing to make conclusions about full water column cyanoHAB biomass if cyanobacteria are vertically stratified. FluoroProbe data were collected at nine stations across western Lake Erie in 2015 and 2016 and analyzed to characterize spatio-temporal variability in cyanobacteria vertical structure. Cyanobacteria were generally homogenously distributed during the growing season except under certain conditions. As water depth increased and high surface layer concentrations were observed, cyanobacteria were found to be more vertically stratified and the assumption of homogeneity was less supported. Cyanobacteria vertical distribution was related to wind speed and wave height, with increased stratification at low wind speeds (bathymetry and environmental conditions could lead to improved biomass estimates. Additionally, cyanobacteria contributions to total chlorophyll-a were shown to change throughout the season and across depth, suggesting the need for remote sensing algorithms to specifically identify cyanobacteria

    The annual cycles of phytoplankton biomass

    Get PDF
    Terrestrial plants are powerful climate sentinels because their annual cycles of growth, reproduction and senescence are finely tuned to the annual climate cycle having a period of one year. Consistency in the seasonal phasing of terrestrial plant activity provides a relatively low-noise background from which phenological shifts can be detected and attributed to climate change. Here, we ask whether phytoplankton biomass also fluctuates over a consistent annual cycle in lake, estuarine–coastal and ocean ecosystems and whether there is a characteristic phenology of phytoplankton as a consistent phase and amplitude of variability. We compiled 125 time series of phytoplankton biomass (chlorophyll a concentration) from temperate and subtropical zones and used wavelet analysis to extract their dominant periods of variability and the recurrence strength at those periods. Fewer than half (48%) of the series had a dominant 12-month period of variability, commonly expressed as the canonical spring-bloom pattern. About 20 per cent had a dominant six-month period of variability, commonly expressed as the spring and autumn or winter and summer blooms of temperate lakes and oceans. These annual patterns varied in recurrence strength across sites, and did not persist over the full series duration at some sites. About a third of the series had no component of variability at either the six- or 12-month period, reflecting a series of irregular pulses of biomass. These findings show that there is high variability of annual phytoplankton cycles across ecosystems, and that climate-driven annual cycles can be obscured by other drivers of population variability, including human disturbance, aperiodic weather events and strong trophic coupling between phytoplankton and their consumers. Regulation of phytoplankton biomass by multiple processes operating at multiple time scales adds complexity to the challenge of detecting climate-driven trends in aquatic ecosystems where the noise to signal ratio is high

    Siliceous microfossil succession in the recent history of Green Bay, Lake Michigan

    Full text link
    Quantitative analysis of siliceous microfossils in a 210 Pb dated core from Green Bay of Lake Michigan shows clear evidence of eutrophication, but a different pattern of population succession than observed in the main deposition basins of the Great Lakes. Sediments deposited prior to extensive European settlement ( ca A.D. 1850) contain high relative abundance of chrysophyte cysts and benthic diatoms. Quantity and composition of microfossils deposited during the pre-settlement period represented in our core is quite uniform, except for the 30–32 cm interval which contains elevated microfossil abundance and particularly high levels of attached benthic species. Total microfossil abundance and the proportion of planktonic diatoms begins to increase ca 1860 and rises very rapidly beginning ca 1915. Maximum abundance occurs in sediments deposited during the 1970's, with a secondary peak in the late 1940's — early 1950's. Increased total abundance is accompanied by increased dominance of taxa tolerant of eutrophic conditions, however indigenous oligotrophic taxa, particularly those which are most abundant during the summer, are not eliminated from the flora, as in the lower Great Lakes. It appears that a combination of silica resupply from high riverine loadings and replacement of indigenous populations by periodic intrusions of Lake Michigan water allow sequential co-existence of species usually exclusively associated with either eutrophic or oligotrophic conditions.Peer Reviewedhttp://deepblue.lib.umich.edu/bitstream/2027.42/43092/1/10933_2004_Article_BF00153737.pd

    Has the Importance of Photoautotrophic Picoplankton Been Overestimated

    No full text
    Postincubation differential filtration (PIDF), preincubation differential filtration (Pre-IDF), and track autoradiography (TA) were compared for estimating cell-specific and total photo-autotrophic picoplankton production. Experiments were performed in Lakes Michigan and Huron and in the Ful of Mexico. When Synechococcus dominated the photoautotrophic picoplankton community (\u3e70% of total picoplankton abundance), PIDF estimates of cell-specific and total picoplankton production were ~3.0 x (range, 2.0--3.8 x) higher than TA estimates. PreIDF estimates of cell-specific and total picoplankton production, however, were only slightly higher than TA estimates (mean, 1.4 x; range, 1.4--1.5 x). The higher PIDF estimates were attributable to breakage and damage of larger photoautotrophs during postincubation filtration and to retention of this labeled material on the smaller (0.2 ”m) pore-size filter. Results from PIDF experiments must be viewed with caution and previous estimates of picoplankto production, cell-specific or total, based solely on PIDF may need to be re-evaluated
    • 

    corecore