2 research outputs found

    Effects of manufacturing chain on mechanical performance : Study on heat treatment of powertrain components

    No full text
    The increasing demands for lightweight designs with high strength call for improved manufacturing processes regarding heat treatment of steel. The manufacturing process has considerable potential to improve the mechanical performance and to obtain more reliable results with less variation. The goal of this thesis is to establish new knowledge regarding improved manufacturing processes in industrial heat treatment applications. Three research questions with associated hypotheses are formulated. Process experiments, evaluation of the mechanical performance, and modelling of the fatigue behaviour assist in answering the questions. The gas quenching procedure following low-pressure carburising differs from the conventional procedure of gas carburising and oil quenching. It is shown that the introduction of a holding time during the low-temperature part of the quench has a positive effect on mechanical properties, with some 20 percent increase in fatigue strength. This is attributed to increased compressive surface residual stress and stabilisation of austenite. Tempering is a common manufacturing process step following hardening in order to increase the toughness of the steel. However, the research shows that the higher hardness from eliminating tempering from the manufacturing process is beneficial for contact fatigue resistance. The untempered steel showed not only less contact fatigue damage but also a different contact fatigue mechanism. Straightening of elongated components is made after heat treatment in order to compensate for distortions. The research shows that straightening of induction hardened shafts may lead to lowering of the fatigue strength of up to 20 percent. A fracture mechanics based model is developed to estimate the effects of straightening on fatigue strength.Ökande krav pĂ„ höghĂ„llfasta lĂ€ttviktskonstruktioner krĂ€ver förbĂ€ttrade tillverkningsprocesser för vĂ€rmebehandling av stĂ„l. Det finns stor potential att förbĂ€ttra mekanisk prestanda och att erhĂ„lla mer tillförlitliga resultat med mindre variation genom att förbĂ€ttra tillverkningsprocessen. MĂ„let med denna avhandling Ă€r att etablera ny kunskap kring tillverkningsprocesser inom industriella vĂ€rmebehandlingsapplikationer. Tre forskningsfrĂ„gor med tillhörande hypoteser formuleras. Processexperiment, utvĂ€rdering av mekanisk hĂ„llfasthet och modellering av utmattningsbeteende bygger upp besvarandet av frĂ„gorna. Gaskylning som följer lĂ„gtrycksuppkolning skiljer sig frĂ„n det konventionella förfarandet med gasuppkolning och slĂ€ckning i olja. Resultaten visar att en hĂ„lltid i den nedre delen av kylningsförloppet har positiv inverkan pĂ„ utmattningshĂ„llfastheten. Orsaken till förbĂ€ttringen hĂ€nförs till ökade tryckrestspĂ€nningar samt stabilisering av austenit. Anlöpning Ă€r en vanlig tillverkningsprocess som efterföljer hĂ€rdning för att öka stĂ„lets seghet. Forskningen visar dĂ€remot att den högre hĂ„rdheten för oanlöpt stĂ„l Ă€r fördelaktig för motstĂ„nd mot kontaktutmattning. Oanlöpt stĂ„l visade mindre mĂ€ngd kontaktutmattningsskador och Ă€ven en annan skademekanism. Riktning av lĂ„nga komponenter görs efter vĂ€rmebehandling för att kompensera för de formförĂ€ndringar som uppstĂ„r. Forskningen visar att riktning av induktionshĂ€rdade axlar kan leda till sĂ€nkning av utmattningshĂ„llfastheten med upp till 20 procent. En brottmekanisk modell som uppskattar effekten av riktning pĂ„ utmattningshĂ„llfasthet presenteras.QC 20150410</p

    Evolution of Martensite Tetragonality in High-Carbon Steels Revealed by In Situ High-Energy X-Ray Diffraction

    No full text
    The martensitic transformation was studied by in situ and ex situ experiments in two high-carbon, 0.54 and 0.74 wt pct C, steels applying three different cooling rates, 15 °C/s, 5 °C/s, and 0.5 °C/s, in the temperature range around Ms, to improve the understanding of the evolution of martensite tetragonality c/a and phase fraction formed during the transformation. The combination of in situ high-energy X-ray diffraction during controlled cooling and spatially resolved tetragonality c/a determination by electron backscatter diffraction pattern matching was used to study the transformation behavior. The cooling rate and the different Ms for the steels had a clear impact on the martensitic transformation with a decrease in average tetragonality due to stronger autotempering for a decreasing cooling rate and higher Ms. A slower cooling rate also resulted in a lower fraction of martensite at room temperature, but with an increase in fraction of autotempered martensite. Additionally, a heterogeneous distribution of martensite tetragonality was observed for all cooling rates
    corecore