21 research outputs found

    System model development and numerical simulation of low-head pumped hydro storage

    Get PDF
    To tackle the growing demand for grid-scale energy storage, the ALPHEUS project proposes a novel low-head pumped hydro storage system aimed for coastal application in countries where the topography does not allow for traditional high-head storage. This system consists of a reversible pump-turbine technology with two contra-rotating runners coupled to their respective axial-flux motor-generators as well as a dedicated control, optimising for energy balancing and the provision of ancillary services. To better understand the integration and dynamic interaction of the individual components of the plant and to allow for the simulation of a wide variety of operating conditions and scenarios, this research aims at developing a system model coupling the hydraulic, mechanical and electrical components. Numerical results are compared and verified based on CFD simulations. While some inaccuracies have to be expected, the comparison shows an overall good match with only minor deviations in dynamic behaviour and steady state results

    Extinction, Persistence, and Evolution

    Get PDF
    Extinction can occur for many reasons. We have a closer look at the most basic form, extinction of populations with stable but insufficient reproduction. Then we move on to competing populations and evolutionary suicide

    Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling

    Get PDF
    To counteract a potential reduction in grid stability caused by a rapidly growing share of intermittent renewable energy sources within our electrical grids, large scale deployment of energy storage will become indispensable. Pumped hydro storage is widely regarded as the most cost-effective option for this. However, its application is traditionally limited to certain topographic features. Expanding its operating range to lowhead scenarios could unlock the potential of widespread deployment in regions where so far it has not yet been feasible. This review aims at giving a multi-disciplinary insight on technologies that are applicable for low-head (2-30 m) pumped hydro storage, in terms of design, grid integration, control, and modelling. A general overview and the historical development of pumped hydro storage are presented and trends for further innovation and a shift towards application in low-head scenarios are identified. Key drivers for future deployment and the technological and economic challenges to do so are discussed. Based on these challenges, technologies in the field of pumped hydro storage are reviewed and specifically analysed regarding their fitness for low-head application. This is done for pump and turbine design and configuration, electric machines and control, as well as modelling. Further aspects regarding grid integration are discussed. Among conventional machines, it is found that, for high-flow low-head application, axial flow pump-turbines with variable speed drives are the most suitable. Machines such as Archimedes screws, counter-rotating and rotary positive displacement reversible pump-turbines have potential to emerge as innovative solutions. Coupled axial flux permanent magnet synchronous motor-generators are the most promising electric machines. To ensure grid stability, grid-forming control alongside bulk energy storage with capabilities of providing synthetic inertia next to other ancillary services are required

    Low-head pumped hydro storage: A review of applicable technologies for design, grid integration, control and modelling

    No full text
    To counteract a potential reduction in grid stability caused by a rapidly growing share of intermittent renewable energy sources within our electrical grids, large scale deployment of energy storage will become indispensable. Pumped hydro storage is widely regarded as the most cost-effective option for this. However, its application is traditionally limited to certain topographic features. Expanding its operating range to low-head scenarios could unlock the potential of widespread deployment in regions where so far it has not yet been feasible. This review aims at giving a multi-disciplinary insight on technologies that are applicable for low-head (2-30 m) pumped hydro storage, in terms of design, grid integration, control, and modelling. A general overview and the historical development of pumped hydro storage are presented and trends for further innovation and a shift towards application in low-head scenarios are identified. Key drivers for future deployment and the technological and economic challenges to do so are discussed. Based on these challenges, technologies in the field of pumped hydro storage are reviewed and specifically analysed regarding their fitness for low-head application. This is done for pump and turbine design and configuration, electric machines and control, as well as modelling. Further aspects regarding grid integration are discussed. Among conventional machines, it is found that, for high-flow low-head application, axial flow pump-turbines with variable speed drives are the most suitable. Machines such as Archimedes screws, counter-rotating and rotary positive displacement reversible pump-turbines have potential to emerge as innovative solutions. Coupled axial flux permanent magnet synchronous motor-generators are the most promising electric machines. To ensure grid stability, grid-forming control alongside bulk energy storage with capabilities of providing synthetic inertia next to other ancillary services are required

    Layoffs, recalls and unemployment duration: evidence from Sweden

    No full text
    The question addressed in this paper is whether the possibility of exit from unemployment to the previous employer affects the duration of unemployment spells in Sweden. The empirical analysis is performed using an employee–employer dataset that includes a number of enterprise characteristics and provides information on individual tenure. The econometric approach employs estimation of a competing risk duration model to distinguish between exits to the previous employer and exits to a new job. The findings suggest that greater tenure raises the risk of transition to the previous employer, while high education levels increase the risk of obtaining a new job. Moreover, the impact of benefit exhaustion is observed only for transitions to new employment.unemployment, unemployment duration, temporary layoffs, J64, J68,
    corecore